Mahatma Jyotiba Phule Rohilkhand University, Bareilly

(A State University)

CBCS and NEP-2020 Based

Curriculum and Syllabi

of

M.Sc./M.A. Mathematics

(w.e.f. 2021-2022)

Approved by : BOS Approval Date : 01.08.2022

Mission

• To contribute towards building calibre of the students by providing quality education and research in Mathematics through updated curriculum, effective teaching learning process.

• To impart innovative skills, team-work, ethical practices to the students so as to meet societal expectations.

• To build a strong base in Mathematics for various academic programs across the institute.

About the Mathematics

Mathematics is a powerful tool for global understanding and communication that organizes our lives and prevents chaos. Mathematics helps us understand the world and provides an effective way of building mental discipline. Mathematics encourages logical reasoning, critical thinking, creative thinking, abstract or spatial thinking, problem-solving ability, and even effective communication skills. Mathematics is necessary to understand the other branches of knowledge. All depend on mathematics in one way or another. There is no science, art, or specialty except mathematics was the key to it. The discipline and mastery of any other science or art are very much related to the size of mathematics.

Duration:

M.Sc./M.A. Mathematics is a full-time postgraduate level program offered by the Department of Mathematics. This is a 2-years program, consisting of four semesters with two semesters per year.

Eligibility:

For M.Sc. in Mathematics, the candidates with the following qualification are eligible: B.Sc./B.A. (Hons.) in Mathematics from any recognized Indian or foreign university OR B.Sc./B.A. with Mathematics as one of the major subject of study.

Program Educational Objectives (PEOs)

- 1. Graduates will contributes rapidly growing multidisciplinary research that uses advanced computing capabilities to understand and solve complex problems.
- 2. Graduate of the programme will be capable of handling every problem existing around the world through mathematical structures.
- 3. Graduate of the programme will become competent users of mathematics and to provide mathematical solution to real life problems.
- 4. Graduates will continue lifelong learning and pursue higher studies in mathematical and statistical sciences

Program Outcome:

Graduate will be able to

- **a)** Progress the critical analysis and problem solving skills required for research and development organization and industry.
- **b)** Communicate confidently and effectively with industry and society at large, regarding complex problem and solution of the problem, existing around.

- **c)** Engage independent and lifelong learning with a high level of enthusiasm and commitment to improve knowledge and competence continuously.
- **d)** Contribute significantly in academics through teaching and research.
- **e)** Demonstrate knowledge and understanding of various structure of mathematics and apply the same to one's own work, as a member and leader in a team, manage projects efficiently after consideration of economical and financial factors.
- **f)** Apply ethical principles and commit to professional ethics and responsibilities and norms of the professional practice.

The board of studies for Master of Science in Mathematics of department of mathematics includes the following members:

- 1. Dr N. K. Sharma, Associate Prof., Dept. of Maths., SM College, Chandausi, Convener
- 2. Prof. Sanjeev Rajan, Dept. of Maths., Hindu College, Moradabad, Member
- 3. Dr Arif Nadeem, Associate Prof., Dept. of Maths., Bareilly College, Bareilly, Member
- 4. Prof. T.S. Chauhan, Dept. of Maths., Bareilly College, Bareilly, Member
- **5.** Dr Harish Chandra Srivastva, Associate Prof., Dept. of Maths., SS College, Shahjahanpur,Member
- 6. Dr Abdul Salam, Associate Prof., Dept. of Maths., GF College, Shahjahanpur, Member
- 7. Prof. M.C. Joshi, Kumayun University, Nainital
- 8. Prof. Sanjay Chadhary, B.R. Ambedkar Univeersity, Agra

Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive a master degree in the Mathematics. M.Sc./M.A. (Mathematics) post-graduates of this department are expected to demonstrate knowledge of major portion of pure and applied mathematics and the ability to provide an overview of scholarly debates relating to Mathematics. Also it is expected that after the completion of this course they will be in a position to pursue their research in Mathematics. Along with mathematical skills, it is also expected that they will learn life skills of argumentation, communication and general social values which are necessary to live rich, productive and meaningful lives. The list below provides a synoptic overview of possible career paths provided by a postgraduate training in Mathematics:

- 1. Teaching
- 2. Research
- 3. Engineering
- 4. Computer programming (In different MNC's)
- 5. Statistician

6. Defense Research and Development Organization (DRDO) and Indian Space Research Organization (ISRO).

- 7. Can go for UPSC/Civil services exam.
- 8. Finance
- 9. Science and business

SEMESTER-WISE COURSES AND CREDIT DISTRIBUTION

SEMESTER-I

Core Course (CC), Discipline Centric Elective Courses (DCEC), General Elective Course (GEC) L-Lecture, T- Tutorial, P-Presentation/practical

Total Credits: 24 (CC: 20, GEC: 4)

Sr. No.	Course Code	Course name	L	Т	Р	Hrs/	Total
						Weeks	Credits
1	MATHCC0411	Advanced Algebra	3	2	0	5	4
2	MATHCC0412	Real Analysis	3	2	0	5	4
3	MATHCC0413	Differential Equation with applications	3	2	0	5	4
4	MATHCC0414	Fluid Dynamics	3	2	0	5	4
5	MATHCC0415	Power point presentation and viva-voce	2	0	4	6	4
	Generic Elective Courses						
6	MATHGEC0416	MOOC/GEC (To be taken from other					4
		than mathematics)					

Note: 1. One project/Survey/Industrial training should be allotted to each student in the second week of first semester in the supervision of faculty members of the department and the complete project should be submitted at end of the second semester.

2. If any student published any research paper in UGC Care listed journal during PG programme from this project report, he will be given 25% extra marks which he has been awarded out of 100 marks. Maximum obtained marks will be 100 only.

For example,

(i) if a student obtains 75 marks in project and he has published a research paper during his project work then his final marks will be

$$75 + 25\% \text{ of } 75 = 75 + 18.75 = 93.75 = 94$$

(ii) if a student obtains 88 marks in project and he has published a research paper during his project work then his final marks will be

$$88 + 25\% \ of \ 88 = 88 + 22 = 110$$

But he will be awarded only 100 marks.

MOOC/GEC courses offered to PG students of other departments only

Course Code	Course name	L	Т	Р	Hrs/	Total
					Weeks	Credits
MATHGEC0416A	Introduction to Mathematical Analysis	3	2	0	5	4
MATHGEC0416B	Mathematics for Chemist	3	2	0	5	4
MATHGEC0416C	Basic Mathematics for Social Sciences	3	2	0	5	4

Note: 1. GEC courses will be offered only to those students who have studied mathematics upto 10+2 level as per the availability of subject teachers/experts.

2. If the GEC in other than mathematics are not available for mathematics students then they will complete one suitable MOOC course of other subject of 4 credit.

SEMESTER-II Total Credits: 28 (CC: 20, DCEC: 8)

Sr.	Course Code	Course name	L	Т	Р	Hrs/	Total
No.						Weeks	Credits
7	MATHCC0421	Advanced Complex Analysis	3	2	0	5	5
8	MATHCC0422	Topology	3	2	0	5	5
9	MATHCC0423	Project/Survey/Industrial training and viva-voce				8	8
	Discipline Centric Elective Courses						
10	MATHDCEC0424	MOOC/DCEC					5
11	MATHDCEC0425	MOOC/DCEC					5

Discipline Centric Elective Courses for M.Sc. (Mathematics)

(Students will choose any two papers)

Course Code	Course name	L	Т	Р	Hrs/	Total
					Weeks	Credits
MATHDCEC0424&425A	Applied Discrete Mathematics	3	2	0	5	5
MATHDCEC0424&425B	Differential Geometry	3	2	0	5	5
MATHDCEC0424&425C	Mathematical Modelling	3	2	0	5	5
MATHDCEC0424&425D	Advanced Abstract Algebra	3	2	0	5	5
MATHDCEC0424&425E	Number Theory	3	2	0	5	5

SEMESTER-III

Total Credits: 20 (CC: 16, DCEC: 4)

Sr.	Course Code	Course name	L	Т	Р	Hrs/	Total
No.						Weeks	Credits
12	MATHCC0431	Partial Differential Equation with Applications	3	2	0	5	4
13	MATHCC0432	Operation Research	3	2	0	5	4
14	MATHCC0433	Functional Analysis	3	2	0	5	4
15	MATHCC0434	Seminar Presentation and Viva-Voce	2	2	2	6	4
		Skill Enhancement Elective Course					
16	MATHSEEC0435	SEEC	2	2	2	6	0
Discipline Centric Elective Courses							
17	MATHDCEC0436	MOOC/DCEC	3	2	0	5	4

Skill Enhancement Elective Course

(Students will choose only one paper)

SEEC (Skill Enhancement Elective Course, non-credit, only qualifying in nature): This may include a course based on Theoretical/Experimental/Computational Techniques/Methods.

Course Code	Course name]	L	Т	Р	Hrs/ Weeks	Total Credits
MATHCC0435A	Programming in C	,	2	0	4	6	0
MATHCC0435B	Type setting in Advanced Latex	,	2	2	2	6	0
MATHCC0435C	Programming in SCILAB	,	2	2	2	6	0
MATHCC0435D	Research Methodology	/	2	2	2	6	0

Discipline Centric Elective Courses for M.Sc. (Mathematics)

Course Code	Course name	L	Т	Р	Hrs/	Total	
					Weeks	Credits	
MATHDCEC0436A	Difference Equations	3	2	0	5	4	
MATHDCEC0436B	Measure Theory and Integration	3	2	0	5	4	
MATHDCEC0436C	Fuzzy set Theory	3	2	0	5	4	
MATHDCEC0436D	Introduction to Cryptography	3	2	0	5	4	

(Students will choose any one paper)

Note: One project should be allotted to each student in the second week of third semester in the supervision of faculty members of the department and the complete project should be submitted at end of the fourth semester.

2. If any student published any research paper in UGC Care listed journal during PG programme from this project report, he will be given 25% extra marks which he has been awarded out of 100 marks. Maximum obtained marks will be 100 only.

For example,

(i) if a student obtain 75 marks in project and he has published a research paper during his project work then his final marks will be

75 + 25% of 75 = 75 + 18.75 = 93.75 = 94

(ii) if a student obtain 88 marks in project and he has published a research paper during his project work then his final marks will be

 $88 + 25\% \ of \ 88 = 88 + 22 = 110$

But he will be awarded only 100 marks.

SEMESTER-IV

Total Credits: 28 (CC: 20, DCEC: 8)

Sr.	Course Code	Course name	L	Т	Р	Hrs/	Total
No.						Week	Credits
18	MATHCC0441	Mathematical Statistics	3	2	0	5	5
19	MATHCC0442	Advanced Fluid Dynamics	3	2	0	5	5
20	MATHCC0443	Project/Dissertation and viva-voce				8	8
		Discipline Centric Elective Courses					
21	MATHDCEC0444	MOOC/DCEC					5
22	MATHDCEC0445	MOOC/DCEC					5

DCEC Courses offered for M.Sc. (Mathematics)

(Students will choose any two papers)

Course Code	Course name	L	Т	Р	Hrs/	Total
					Week	Credits
MATHDCEC0444&445A	Integral Equation	3	2	0	5	5
MATHDCEC0444&445B	Theory of Elasticity	3	2	0	5	5
MATHDCEC0444&445C	Tensors and General Relativity	3	2	0	5	5
MATHDCEC0444&445D	Information Theory	3	2	0	5	5
MATHDCEC0444&445E	Bio-Mathematics	3	2	0	5	5

MATHDCEC0444&445F	Mathematics for Finance and Insurance	3	2	0	5	5
MATHDCEC0444&445G	Wavelet Analysis	3	2	0	5	5
MATHDCEC0444&445H	Differential Geometry of Manifolds	3	2	0	5	5

Note: The Programme of Post-Graduation in Mathematics will be two years duration. Each year is divided into two Semesters of equal durations. The Programme requires students to take a combination of Core Courses (Major), Electives (Minor) and Industrial Training/Survey/Research Project/Dissertation. A student is required to complete a minimum of 100 Credits (52 Credits in 1st year and 48 Credits in 2nd year) for the completion of the Programme and the award of the Master of Science in Mathematics degree. The entire Programme is based on CBCS system. In brief, the entire Programme of Post-Graduation in Mathematics has been organised into Four Semesters.

Criteria for Internal Class Evaluation for all 4 semester papers (except MATHCCO415, MATHCC0423, MATHCC0434, SEEC, MATHCC0443):

Class Test + Presentations/Assignments = 20 + 10 = 30 marks

Guidelines for Industrial Training/ Project/Survey/Dissertation

In each year of the Programme of Post-Graduation in Mathematics (i.e., during both the Semesters) students will have to opt either Industrial Training/ Project/Survey/Dissertation. It will carry 4 Credits in each Semester (or 8 Credits during the year). The purpose of undertaking a project is to conduct a systematic study related to his/her opted papers. The entire project will be guided by a Faculty Member as well as by a Firm's Official. Students are advised to work in areas that would be of importance to the business organisation and provide policy recommendations for improvement. For this, students will have to take a minimum of 4 hours per Week training at the concerned business Firm during each Semester. They will submit a Progress Report at the end of 1st Semester and 3rd Semester and a Detailed Final Report at the end of 1st year (2nd Semester) and 2nd year (4th Semester). This Detailed Final Report will be evaluated through a Viva – Voce, jointly by the Supervisor and the External Examiner. As regards the option for Dissertation, through this, students will undertake an original research work based on the area of his/her research interest. The Dissertation work will be carried out under the guidance and supervision of a Faculty Member who will monitor the progress of the work. Students will have to give an interim presentation before a panel of Faculty during each Semester. At the end of the year, students will submit a complied Project Report/Dissertation and it will be evaluated through the Viva – Voce, jointly by the Supervisor and the External Examiner appeared of Faculty during each Semester.

Course Curriculum Ist Semester

Course Code		MATHCC0411	Course Name	Advanced				
				Algebra				
Programme	M.A	./M.Sc. Mathematics	Credits	4 (L-3, T-2, P-0)				
Hrs/Weeks	5		Total Hours	60				
Total Marks	ks 100 (Class Int. Exam30 marks, Univ. Exam70 marks)							
Examination	3 Ho	ours	Pre-requisite of course	NIL				
Course Objective	This The in m	course introduces the basic course introduces the basic course is the philosophy of this course is the athematics itself and in application on the prime state of the	noncepts of modern algebra su bat modern algebraic notions cations to areas such as phy	such as groups and rings. Is play a fundamental role hysics, computer science,				

Course	After completing this course, student is expected to learn the following:
Outcomes:	1: Explain the fundamental concepts of advanced algebra such as groups and rings and
	their role in modern mathematics and applied contexts.
	2: Demonstrate accurate and efficient use of advanced algebraic techniques.
	3: Demonstrate capacity for mathematical reasoning through analysing, proving and
	explaining concepts from advanced algebra.
	4: Apply problem-solving using advanced algebraic techniques applied to diverse
	situations in physics, engineering and other mathematical contexts.
NOTE: Eight	questions will be set, two from each of the UNIT. The candidates are required to attempt

any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

	COURSE SYLLABUS					
Units	Content of Each unit					
1	Review of basic Group Theory, Cauchy's theorem, Sylow theorems, Direct product of groups, Normal and Subnormal Series, Composition Series, Jordan-Holder theorem, Solvable groups, Nilpotent groups.					
2	Review of basic Ring Theory, Ring homomorphism, Ideals and Factor rings, Prime and Maximal ideals, Euclidean domains, Principal ideal domains and unique factorization domains, Polynomial rings, Factorization of Polynomials.					
3	Extension fields, Splitting fields, Algebraic and Transcendental extensions, Simple extensions, Separable extensions, Finite fields. Galois Theory, Fundamental Theorem of Galois Theory, Solvability of Polynomials by Radicals.					
4	Modules, Submodules, Quotient modules, Homomorphism and Isomorphisms theorem,					
	Nilpotent transformations, Jordan blocks and Jordan forms, Inner product space, Triangle					
	inequality, Schwarz's Inequality, Bessel's Inequality.					
Sugge	sted Readings:					
1. Gall	ian, J. A. Contemporary Abstract Algebra. 9th edition. Cengage Learning, 2015.					
2. Lan	g, S. Algebra. 3rd edition, Springer 2012.					
3. Here	stein, I. N. Topics in Algebra. 2ndedition. John Wiley and Sons, 2006.					
4. Bha	4. Bhattacharya, P. B. Jain, S. K. and Nagpaul, S. R. Basic Abstract Algebra. 2 nd edition, Cambridge					
Univer	University Press, 2003.					
5. Kha	5. Khanna, V. K. and Bhammbri, S. K. A Course in Abstract Algebra. Vikas Publishing house, 1999.					
6. Coh	6. Cohn, P. M. Algebra. Vols. I & II, John Wiley & Sons, 1991.					
7. Luth	ner, S. and Passi, I. B. S. Algebra. Vol. I-Groups, Vol. II-Rings, Narosa Publishing House (Vol.					
I – 199	96, Vol. II –1990).					
8. Axl	er, S.: Linear Algebra Done Right, 2nd edn. Undergraduate Texts in Mathematics. Springer,					

New York (1997) 9. Brian C. Hall, Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, GTM Springer 2015

opiniger, 2013	,			
Course	MATHCC0412	Course Name	Rea	l Analysis
Code				·
Programme	M.A./M.Sc. Mathematics	Credits	•	4 (L-3, T-2, P-0)
Hrs/Weeks	5	Total Hours		60
Total Marks	100 (Class Int. Exam30 mar	ks, Univ. Exam70 marks)	
Examination	3 Hours	Pre-requisite of cours	e	NIL

Course	The course will develop a deep and rigorous understanding of real line \mathbb{R} and of							
Objective	defining terms to prove the results about convergence and divergence of sequences							
	and series of real numbers. The course will also develop the understanding of							
	metric spaces and convergence, compactness, sequential compactness and							
	connectedness in metric spaces. These concepts have wide range of applications							
	in real life scenario.							
Course	After completing this course, student is expected to learn the following:							
Outcomes:	1: Understand many properties of the real line and learn to define sequence in							
	terms of functions from \mathbb{N} to a subset of \mathbb{R} .							
	2: Recognize bounded, convergent, divergent, Cauchy and monotonic sequences.							
	To calculate the limit superior, limit inferior of sequences and limit of a bounded							
	sequence, Riemann integration theory.							
3: Recognize Riemann-Stieltjes integral and integration of vector valued function								
	4: Recognize bounded variation, total variation, directional derivatives, partial							
	derivative and derivative as a linear transformation.							
NOTE: Eight	NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to							
attempt any five questions in all selecting at least one question from each section. All questions								
carry equal marks. Unit I will be taught via online mode.								

Units	Content of Each unit							
1	Sequences and series of real valued functions, pointwise convergence, uniform							
	convergence, Cauchy's criterion and test for uniform convergence of sequence of							
	functions. Tests for uniform convergence of series of functions (Weierstrass's M-test,							
	Abel's test, Dirichlet's test). Uniform convergence and continuity, Dini's theorem, The							
	Weierstrass approximation theorem.							
2	Convergence of Sequences of Measurable Functions: Convergence in Measure, Uniform							
	Convergence, Theorems on Convergence of Sequences of Measurable Functions,							
	Lebesgue Convergence Theorem, Dominated Convergence Theorem, Beppo Levi's							
	Theorem, Fatou's Lemma, Lebesgue Differentiation Theorem, Riemann integration of real							
	valued functions, Existence of the integral, integral as a limit of a sum, first mean value							
	theorem, Second mean value theorem.							
3	Definition and existence of Riemann-Stieltjes integral, Properties of integrals, integration							
	and differentiation, Fundamental theorem of calculus.							
4	Function of bounded variation, function of bounded variations expressed as difference of							
	increasing functions, function of several variables, partial differentiation,							
	partial derivative of functions of two variable, Integral as a function of parameter,							
	inverse and implicit function theorems, Chain rule, Jacobian, Taylor's theorem for two							
	variables, Tauber's theorem.							
Sugge	sted Readings:							
1. Wa	ter, R. Principles of Mathematical Analysis. 3rdedition, McGraw-Hill, 2017.							
2. Sim	mons, G. F. Introduction to Topology and Modern Analysis. McGraw-Hill Pvt. Ltd. 2016.							
3. Kur	3. Kumaresan, S. Topology of Metric Spaces. Narosa Publishing House, 2011.							
4. Tere	ence T. Analysis II. Hindustan Book Agency, 2009.							
5. Mal	5. Malik, S. C. and Arora, S. Mathematical Analysis. 2nd edition reprint. New Age International							
Publis	hers 2005.							
6. Apc	ostol, T. M. Mathematical Analysis. 2 nd edition. Wesley Publishing Co. 2002.							
7. Soi	nasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa							
Publis	hing House, 1996.							
8. Roy	den, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4th edition, New York, 1993.							

Course	MATHCC0413	Co	ourse	Diff	erential Equation	
Code		Na	ame	with	applications	
Programme	M.A./M.Sc. Mathematics		Credits		4 (L-3, T-2, P-0)	
Hrs/Weeks	5		Total Hou	rs 60		
Total Marks	100 (Class Int. Exam30 mar	ks, U	Jniv. Exam.	-70 mai	rks)	
Examination	3 Hours		Pre-requis	ite of	NIL	
			Course			
Course	The objective of this course	is t	to introduce	the th	eory of ordinary differential	
Objective	equations, fundamental the	oren	ns for exis	stence	and uniqueness differential	
	equations (DE's).					
Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Understand the stability and Poincare Bendixson theory of ordinary differential					
	equations.					
	2: Understand the behaviour of solutions of differential equations.					
	3: Understand the Strum theory for second order ODEs.					
	4. Understand the construction of Greens functions and their applications to solve					
	ODEs.					
NOTE: Eight	questions will be set, two from	m ea	ich of the U	NIT. T	he candidates are required to	
attempt any f	attempt any five questions in all selecting at least one question from each section. All questions					
carry equal m	carry equal marks. Unit I will be taught via online mode.					

Г

Units	Content of Each unit								
1	Lipschitz Condition, Equi-continuity, System of Differential Equations, m th Order								
	Differential Equation in <i>n</i> - dimensions, Concept of Existence, Ascoli-Aerzela Theorem, A								
	theorem of convergence of solutions of a family of initial value problems, Picard's								
	Successive Approximation method, Picard's Theorem, Picard's Second Theorem, Picard-								
	Lindelof Theorem, Existence and uniqueness theory, Cauchy Peano's Theorem,								
	Continuation of Solutions, BanachFixed Point Theorem, Wroskian.								
2	Differential inequalities, One Sided Lipschitz Condition, Maximal and Minimal Solutions,								
	Differential and Integral Inequalities, The Gronwall's Inequality, Theorem of Wintner,								
	Kamke's Uniqueness Theorem, Nagumo's Criteria, Osgood's Criteria, Successive								
	Approximations.								
3	Stability and Poincare Bendixon theory, Phase Plane, Critical Points, Isolated Critical Points,								
	Some Special Critical Points, Centre, Saddle Point, Spiral or FocalPoint, Node, Liapunov								
	Function, Liapunov Stability Theorem, Liapunov Asymptotic Stability Condition,								
	Liapunov Instability Theorem, Non-Linear System, Bendixon Theorem, Poincare -								
	Bendixon Theorem.								
4	Strum theory in linear second order ODEs, Adjoint Differential Equation, Abel-Liouville								
	Formula, Fundamental matrix, Adjoint System, Solution of Nonhomogeneous Differential								
	Equation, Floquet Theory, Matrix method for solution of linear differential equations with constant								
	coefficients, Abel's Formula, Strum Separation Theorem, Strum Comparison Theorem,								
	Existence and uniqueness Theorem, Orthogonal and Orthonormal Functions, Strum-								
	Liouville's Problems, Eigen Values and Eigen Functions, Strum – Liouville's Theorem,								
	Eigen Values of Strum – Liouville's Problem.								

1. Reid, W. T. Ordinary Differential Equations. John Wiley and Sons, New York, 1971.

2. Simmons, G. F. Differential Equations with Applications and Historical Notes. 2nd edition, Tata McGraw Hill, New Delhi, 2016.

3. Ross, S. L. Differential Equations. 3rd edition, Wiley India, 2007.

4. Raisinghania, M. D. Advanced Differential Equations. S. Chand & Company Ltd., New Delhi, 2001.

5. P. Hartman, Ordinary Differential Equations, John Wiley, 1964.

6. E.A Coddington and N. Levinson, Theory of ordinary differential equations, McGraw Hill, NY, 1955.

Course	MATHCC0414	Course	Fluid Dynamics				
code		Name					
Programme	M.A./M.Sc. Mathematics	Credits	4 (L-3, T-2, P-0)				
Hrs/Weeks	5	Total Hours	60				
Total Marks	100 (Class Int. Exam30 marks, U	Jniv. Exam70 ma	rks)				
Examination	3 Hours	Pre-requisite of	NIL				
		course					
Course	The objective of this course is to p	provide a treatment	of topics in fluid dynamics to				
Objective	a standard where the student will l	be able to apply the	techniques used in deriving a				
	range of important results and in research problems. The objective is to provide the						
	student with knowledge of the fundamentals of fluid dynamics and an appreciation						
	of their application to real world problems.						
Course	After completing this course, student is expected to learn the following:						
Outcomes:	1: Understand the basic principles of fluid dynamics, such as Lagrangian and						
	Eulerian approach etc.						
	2: Use the concept of stress in fluids with applications.						
	3: Analyse Irrotational and rotational flows in fluids and some of their properties						
	4: Find analytical solution of Navier Stoke equation and solutions of some						
	benchmark problems						
NOTE: Eight	questions will be set, two from ea	ch of the UNIT. T	he candidates are required to				
attempt any five questions in all selecting at least one question from each section. All questions							
carry equal marks. Unit I will be taught via online mode							

Units	Content of Each unit
1	Kinematics - Lagrangian and Eulerian methods. Equation of continuity. Boundary
	surfaces. Stream lines, Path lines and stream lines. Velocity potential. Irrotational and
	rotational motions. Vortex lines.
2	Equations of motion - Lagrange's and Euler's equations of motion, Conservative field of
	force, Bernoulli's Theorem, Equation of motion by flux method, Impulsive actions,
	Circulation, Kelvin's circulation theorem, Minimum energy theorem.
3	Motion in two dimensions: Stream function, Irrotational motion in two-dimensions.
	Complex velocity potential, sources, sinks, doublets and images, Milne-Thomson circle
	Theorem, Theorem of Blasius.
4	Motion of Cylinder: Motion of a circular cylinder, Liquid streaming past a fixed circular
	cylinder, Motion of two co-axial cylinders, Elliptic cylinder moves in an infinite liquid,
	Liquid streaming past a fixed elliptic cylinder, Circulation about an elliptic cylinder, Kutta-
	Joukowski theorem,

1. Besaint, W.H. and Ramsey, A.S. A Treatise on Hydromechanics Part Ihydrostatics, Andesite Press, 2017.

2. Kundu, P.K., Cohen, I. M. and Dowling, R. D. Fluid Mechanics, 6th edition, Academic Press, 2015.

3. O'Neil, M. E., and Chorlton, F. Ideal and Incompressible Fluid Dynamics. Ellis Horwood Ltd, 1986.

4. Yuan, S.W. Foundations of Fluid Mechanics. Prentice Hall of India Private Limited, New Delhi, 1976.

5. Curle, N. and Davies, H. J. Modern Fluid Dynamics.Vol1, D Van Nostrand Company Ltd, London, 1968.

Course	MATHCC0415	Co	ourse	Pow	er point presentation	
code		Name		and	viva-voce	
Programme	M.A./M.Sc. Mathematics		Credits		4 (L-2, T-2, P-2)	
Hrs/Weeks	6		Total Hour	rs	60	
Total Marks	100 (Class Int. Exam30 mat	rks, i	Final -70 ma	arks)		
Examination	one batch per day		Pre-requisi	ite of	NIL	
			course			
Course	The purpose of this course is to enhance communication skills and presentation. How					
Objective	to face interviews in competitions.					
Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Will be able to present the subject in interviews.					
	2: Get ability to face interviews.					
	3: Skills to write subject in own way.					
	4: Get knowledge of preparing Dissertation, Thesis and Books.					
NOTE: Final Seminar presentation will be in the presence of Departmental Faculties and Students of						
second semester. Final viva-voce will be in the presence of external examiner						

Pattern

1	A : Viva and Presentation of assigned / selected problem /topic using PPT by each student in each of the other four papers to be evaluated internally throughout the semester Total Marks : 7.5x4=30
2	B :Viva –Voce concerning all other four papers of the semester to be evaluated in the presence of one internal and at least one external examiner Total Marks : 70

MOOC/GEC courses offered to PG students of other departments only

Course	MATHGEC0416A	Course	Intr	oduction	to
code		Name	Mat	thematical Analysis	
Programme	M.A./M.Sc. Mathematics	Credits		4 (L-3, T-2, P-0)	
Hrs/Weeks	5	Total Hours		60	
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)				
Examination	3 Hours	Pre-requisite of		NIL	
		course			

Course	The course will develop a deep and rigorous understanding of sets and functions, and					
Objective	defining terms to prove the results on convergence of sequences and series, defining					
	limit, continuity, differentiability and their geometrical representation. These concepts have wide range of applications in real life.					
Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Understand many properties of sets and their relations, including finite set and					
	countable set.					
	2: Define functions and their classifications, including algebraic and transcendental					
	functions and their geometric representations.					
	3: Define sequences in term of functions from N to R and their convergences.					
	4: Recognize limit, continuity and differentiability and their geometrical					
	interpretation.					
NOTE. Elabe	substitutes will be get true from each of the UNIT. The condidates are required to					

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit		
1	Sets, different kinds of sets, infinite and finite sets, countability, types of relations - void,		
	universal, reflexive, symmetric, transitive and equivalence classes, complex numbers,		
	graphic representation and properties, polar form of complex numbers, de Movier's theorem.		
2	Functions, domain, co-domain, range, classification of real functions, algebraic and		
	transcendental functions, even and odd functions, periodic functions, graphs of some		
	important functions.		
3	Definition of sequence and its convergence, series and convergence. Quadratic equations and		
	roots, nature of roots.		
4	Limits, continuity and differentiability: Limit of a function, fundamental theorem on limits,		
	methods of evaluating limits, existence of limit, left hand and right hand limit, continuity at		
	a point, continuity in an interval, differentiability of a function at a point and in an interval,		
	geometrical interpretation.		
Suggested Readings:			
1. Wal	ter, R. Principles of Mathematical Analysis. 3rdedition, McGraw-Hill, 2017.		

2. Ram, B. Discrete Mathematics. Pearson Education, 2012.

3. Malik, S. C. and Arora, S. Mathematical Analysis. 2ndedition. New Age International Publishers, 2005.

4. Somasundram, D. and Chaudhary, B. A First Course in Mathematical Analysis. Narosa Publishing House, 1996.

5. Royden, H. L. Real Analysis, Macmillan Pub. Co., Inc. 4thcomplex an Edition, New York, 1993

Course	MATHGEC0416B	Course	Mat	thematics for Chemist	
code		Name			
Programme	M.A./M.Sc. Mathematics	Credits		4 (L-3, T-2, P-0)	
Hrs/Weeks	5	Total Hours		60	
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)				
Examination	3 Hours	Pre-requisite of NIL		NIL	
		course			
Course	The main objective of this course is to introduce the students to the exciting world of				
Objective	numerical analysis, differential equations and statistics.				

Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Learn the basics of numerical analysis, to calculate the errors in approximations				
	and their properties.				
	2: Understand the basics of differential equations to solve the first order linear				
	differential equations and second order differential equations.				
	3: Analyse the singular points, power series solution of differential equation at regular				
	and irregular singular points, Bessel's and Legendre's equations and their solutions.				
	4: Use the basics tools of statistics and by using these techniques to measures central				
	tendency, learn Gaussian and Binomial distributions.				
NOTE: Eight	questions will be set, two from each of the UNIT. The candidates are required to				

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Conte	nt of Each unit				
1	Algeb	praic, transcendental functions, approximation, errors in approximation, absolute, relative				
	and pe	percentage errors, matrices and their properties, some special matrices, matrix algebra, the				
	invers	e matrix, linear transformations, or	thogonal mat	rices a	nd orthogonal transformations.	
2	Soluti	on of differential equations, f	irst-order li	near	equations- separable equations,	
	homo	geneous linear equations, non-hom	logeneous lin	near eq	uations, second-order differential	
	equati	ons with constant coefficients, ger	ieral solution	n, parti	cular solution, linear equations in	
	chemi	cal kinetics, harmonic oscillator and	d some other	applic	ations	
3	Singu	lar points, power series solution of	differential of	equatio	n at regular and irregular singular	
	points	, Bessel's and Legendre's equation	is and their s	solution	ns, partial differentiation, types of	
	partia	l differential equations. Line integ	grals, double	e integ	rals, volume integrals, Laplacian	
	operat	cor, finite difference operators.				
4	Descr	iptive statistics, measures of centr	al tendency,	measu	res of dispersion, frequency and	
	proba	bility, permutations and combinatio	ns, binomial	distrib	ution, Gaussian distribution.	
Sugge	Suggested Readings:					
1. Gup	ota, S. C	C. and Kapoor, V.K. Fundamentals of	of Mathemat	ical Sta	tistics. S. Chand & Sons, 2014.	
2. Stei	. Steiner, E. The Chemistry Maths Book. 2 ndedition, Oxford University Press, 2008.					
3. Lips	schutz,	S. and Lipson, M. Linear Algebra.	Brd edition, T	l'ata Mo	Graw-Hill, 2005.	
4. Kais	singnan	ia, M. D. Advanced Differential Eq	uations. S. C	nana o	company Ltd. New Delm, 2001.	
Cour	se	MATHGEC0416C	Course	Basi	c Mathematics for	
code Name Social Science				al Science		
Progra	Programme M.A./M.Sc. Mathematics Credits 4 (L-3, T-2, P-0)		4 (L-3, T-2, P-0)			
Hrs/W	'eeks	5	Total Hours 60			
Total I	Marks	Aarks 100 (Class Int. Exam30 marks, Univ. Exam70 marks)				
Exami	inatio	3 Hours	Pre-requisite of NIL		NIL	
n		course				
	•	The main chiective of this cour	and in the and	ouroad	students to develop a working	

Course The main objective of this course is to encourage students to develop a working knowledge of the basic Mathematics for social science and will present some of the ideas that form the foundation of quantitative work in the social sciences. In particular, topics from logarithm, set theory, matrix theory and calculus will be discussed with emphasis on the understanding of concepts and the development of intuition.

Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Explain the fundamental concepts of indices, logarithm and antilogarithm and their				
	role in basic Mathematics for social science.				
	2: Demonstrate accurate and efficient use of set theory and Venn diagram.				
	3: Understand and use the terms: function, relation, series arithmetic, geometric				
	progression, Permutations and Combinations.				
	4: Understand the concepts and properties of limits, continuity and differentiation of a				
	function, logical reasoning, probability and descriptive statistics.				
NOTE: Eight c	E: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five				
questions in all	juestions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be				
taught via online mode.					

COURSE SYLLABUS

Units	Content of Each unit				
1	Binary numbers, indices, logarithm and antilogarithm, laws and properties of logarithms, simple applications of logarithm and antilogarithm, numerical problems on averages, calendar, clock, time, work and distance, mensuration, seating arrangement, sets, types of sets, Venn diagram, De Morgan's laws, problem solving using Venn diagram, relations and types of relations.				
2	Introduction of sequences, series arithmetic and geometric progression, relationship between AM and GM. Basic concepts of permutations and combinations, permutations, combinations with standard results. Introducing functions, domain and range of a function, types of functions (Polynomial function; Rational function; Logarithm function, Exponential function; Modulus function; Greatest Integer function, Signum function), Graphical representation of functions.				
3	Concept of limits and continuity of a function, instantaneous rates of change, differentiation as a process of finding derivative, derivatives of algebraic functions using Chain rule. Mathematically acceptable statements, connecting words/ phrases in Mathematical statement consolidating the understanding of "if and only if (necessary and sufficient) condition", "implies", "and/or", "implied by", "and", "or", "there exists" and their use through variety of examples related to real life and Mathematics problems based on logical reasoning (coding- decoding, odd man out, blood, relation, syllogism etc).				
4	Random experiment, sample space, events, mutually exclusive events. Independent and dependent Events, law of total probability, Bayes' Theorem. Data on various scales (nominal, ordinal, interval and ratio scale), data representation and visualization, data interpretation (dispersion, deviation, variance, skewness and kurtosis), percentile rank and quartile rank, correlation (Pearson and Spearman method of correlation), applications of descriptive statistics using real time data.				
Sugges	Suggested Readings:				
1. Gill	1. Gill J. Essential Mathematics for Political and Social Research, Cambridge University Press, 2016.				
2. Haeussler E., Paul R. and Wood R. Introductory Mathematical Analysis for Business, Economics, and the Life					
and Social Sciences, 15th edition. Prentice-Hall, 2015.					
3. Gold	Istein L., Lay D., and Schneider D. Calculus and Its Applications, 14th Edition. Prentice Hall, 2014.				

4. Hagle T. Basic Math for Social Scientists: Problems and Solutions, 1996.

5. Hagle T. Basic Math for Social Scientists: Concepts, 1996.

6. Kleppner D. and Ramsey N. Quick Calculus. Wiley, 1995.

7. Namboodiri K. Matrix Algebra: An Introduction. Sage Publications # 38, 1994.

SEMESTER-II CC Course

Course	MATHCC0421	Course Name	Advanced		
Code			Complex Analysis		
Programme	M.A./M.Sc. Mathematics	Credits	5 (L-3, T-2, P-0)		
Hrs/Weeks	5	Total Hours	60		
Total Marks	100 (Class Int. Exam30 mark	s, Univ. Exam70 marks)		
Examination	3 Hours	Pre-requisite of course	NIL		
Course	The primary objective of this	course is to understand t	he notion of logarithmically		
Objective	convex function and its fusion with maximum modulus theorem, the spaces of continuous, analytic and meromorphic functions, Runge's theorem and topics related with it, introduce harmonic function theory leading to Dirichlet's problem, theory of range of an entire function leading to Picard and related theorems.				
Course	After completing this course, s	tudent is expected to lear	n the following:		
Outcomes:	1: Understand the basics of logarithmically convex function that helps in extending maximum modulus theorem.				
	2. Be familiar with metric on sp equi-continuity and normal fan	nilies leading to Arzela-A	scoli and related theorems		
	 3: Appreciate the richness of simply connected region which connects various fields topology, analysis and algebra. 4: Know how big the range of an entire function is as well as Picard and related theorems. 				
NOTE: Eight attempt any fi	NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry				

equal marks. Unit I will be taught via online mode.

	COURSE SYLLABUS			
Units	Content of Each unit			
1	Maximum modulus principle, Minimum modulus principle, Schwarz's lemma, convex			
	functions and Hadamard's three circles theorem, Three circles theorem as a convexity			
	theorem, Phragmen-Lindelof theorem, Taylor theorem, Laurentz theorem, Fundamental			
	theorm of algebra, Argument principle.			
2	The space of continuous functions, spaces of analytic functions, Weierstrass factorization			
	theorem. Gamma function, Reimann zeta function, Residue, Residue theorem, Steadily			
	increasing function, Jordan's Lemma, Integration round unit circle, Evaluation of integrals			
	when f(z) has no pole on real axis and poles on real axis, Rectangular contours.			
3	Analytic continuation, Runge's theorem, Integral Function, Order of an Integral			
	function, Canonical Product, Vitali's Convergence Theorem, Carleman's Theorem,			
	Weierstrass's Theorem, Mittag-Leffier's theorem, Schwarz reflection principle,			
	Hadamard's factorization theorem.			
4	Basic properties of harmonic functions, Jensen's formula, Jensen's inequality, Jensen's			
	theorem, Poisson-Jensen Formula, Picard theorem, Schottky's theorem, Infinite Product,			
	General principle of convergence of Infinite product, Absolutely Convergence,			
	Derangement of Factors, Problems related to convergence of Infinite Product.			
Sugge	sted Readings:			
1. Ahl	fors, L.V. Complex Analysis. 3rd edition, McGraw-Hill, 2017.			
2. Alpay, D. A Complex Analysis Problem Book. Birkhäuser, 2016.				
3. Churchill, R. V. and Brown, J. W. Complex Variables and Applications. 9th edition, McGraw				
Hill Education, 2014.				
4. Edward, S. B. and Snider, Arthur D. Fundamental of Complex Analysis with Applications to				
Engine	eering and Sciences. Pearson Education, 2014.			
5. Lan	g, S. Complex Variable. Springer, 2013.			

6. Conway J. B. Functions of One Complex Variable. Springer, 2000. 16

Course	MATHCC0422	Course Name	Topology		
Code					
Programme	M.A./M.Sc. Mathematics	Credits	5 (L-3, T-2, P-0)		
Hrs/Weeks	5	Total Hours	60		
Total Marks	100 (Class Int. Exam30 marks, U	Jniv. Exam70 marks)			
Examination	3 Hours	Pre-requisite of course	NIL		
Course	This course aims to teach the func	lamentals of point set topolog	gy and constitute an		
Objective	awareness of need for the topol	ogy in Mathematics. It is a	central of modern		
	analysis, and many further interesting generalizations of metric space have been developed.				
Course	After completing this course, stud	ent is expected to learn the fo	ollowing:		
Outcomes:	1: Construct topological spaces from metric spaces and using general properties of				
	neighbourhoods, open sets, close	sets, basis and sub-basis			
	2: Apply the properties of open sets, close sets, interior points, accumulation points				
	and derived sets in deriving the proofs of various theorems				
	3: Understand the concepts of countable spaces and separable spaces				
	4: Learn the concepts and properties of the compact and connected topological				
	spaces				
NOTE: Eight	NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to				

attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Units	Content of Each unit				
1	Definition and examples of topological spaces, basis and sub-basis, open sets, closed sets,				
	neighbourhoods, interior points, limit points, boundary points, exterior points of a set, closure				
	of a set, derivedset, Hausdorff spaces.				
2	Continuous functions, Countable and uncountable sets. Infinite sets and the Axiom of Choice with				
	Cardinal numbers and its arithmetic.Schroeder-Bernstein theorem. Cantor's theorem and the continuum				
	hypothesis. Zom's lemma. Well-ordering theorem, open and closed mappings, homeomorphism,				
	Tychonoff theorem.				
3	Compactness and finite intersection property. Sequentiallyand countably compact sets. Local				
	compactness and one point compactification. Stone vech compactification.				
4	Separation axioms, T0, T1, T2, Lindelof spaces, regular and normal spaces, Urysohn Lemma,				
	metrization theorems (Urysohnmetrization, Nagata-Smirnov metrization theorem), Tietze				
	extension theorem, compactification.				
Sugge	sted Readings:				
1. Josh	i, K. D. Introduction to General Topology. 2 nd edition, New Age International Private				
Lim	ited, 2017.				
2. Mur	2. Munkres, J. R. Toplogy. Pearson Education, 2017.				
3. Sim 2010	mons, G. F. Introduction to Topology and Modern Analysis. Tata McGraw-Hill Education, 6.				

- 4. Pervin, W. J. Foundations of General Topology. Academic Press, 2014.
- 5. Singh, T. B. Elements of Topology. CRC Press, Taylor Francis, 2013.6. Kelley, J. L. General Topology, 2nd edition, Springer, New York, 1991.

Course	MATHCC0423	C	ourse	Project/Survey/Industrial	
Code		Na	ame	me Training and Viva-Voce	
Programme	M.A./M.Sc. Mathemati	cs	Credits		8 (L-0, T-0, P-0)
Hrs/Weeks	8		Total Hou	rs	108
Total Marks	100 (Periodic presentat	tion:	30 Extern	al Eval	uation -70)
Examination	one batch per day		Pre-requis	ite of	NIL
			course		
Course	The purpose of this c	course is to enhance writing and communication skills,			
Objective	presentation. How to pr	esent subject and ongoing researches.			
Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Will be able to present research work in the field.				
	2: Get ability to write subject in own way.				
	3: Skills to know future of the subject.				
	4: Get knowledge of preparing Dissertation, Thesis and Books.				
NOTE: Two periodic presentations of project will be in the presence of Departmental Faculties and					

Students of third semester. One presentation will be at the end of 6th weeks and the second presentation will be at the end of 12th week.

Total Marks: $10 \times 2 = 20$

B :Viva –Voce concerning of project and other papers will be evaluated in the presence of one internal and at least one external examiner

Total Marks : 30

Pattern

1	Project/Dissertation should be submitted in the university for external evaluation.
	Plagiarism must be less than 25%
	Total Marks : 50
2	One of the teacher will be chosen as supervisor under whose guidance the student will complete is project work. He may choose two faculties one as supervisor and other as co-
	supervisor.

Discipline Centric Elective Courses

Discipline Centric Elective Courses						
Course	MATHDCEC0424&0	425A	Course	Advanced	Discrete	
Code		Name	Mathematic	CS		
Programme	M.A./M.Sc. Mathematics		Credits	5(L-3, T-2, P-0)		
Hrs/Weeks	s 5		Total Hours	60		
Total Marks	100 (Class Int. Exam30 mark	s, Univ. I	Exam70 marks))		
Examination	3 Hours	Pre-req	uisite of course	NIL		
Course	The main objective of the course	se is to in	troduce concept	s of mathematical	logic, Lattice	
Objective	and graph theory and to give a	a brief in	troduction of Bo	olean algebra, bi	partite graphs	
	and trees and studying for their applications in real life.					
Course	After completing this course, student is e		expected to learn	n the following:		
Outcomes:	1: Analyse logical propositions	using tru	uth tables.			
	2: Understand the concept of la	ttice.				
	3: Learn about the applications of Boolean algebra in switching theory.					
	4: Use the concept of planar graphs, trees and study for their properties.					
NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt						
any five questions in all selecting at least one question from each section. All questions carry equal						
marks. Unit I will be taught via online mode.						

Units	Content of Each unit					
1	Formal Logic: Statements, proposition, symbolic representation and tautologies, quantifiers,					
	proposition logic. Lattices: Lattices as partially ordered sets, their properties, lattices as					
	algebraic systems, some special lattices, e.g., complete, complemented and distributive lattices,					
	some special lattices e.g., bounded, complemented & distributive lattices.					
2	Boolean Algebra: Boolean algebra as lattices, various Boolean identities, the switching algebra					
	example, join - irreducible elements, atoms and minterms, Boolean Forms and their equivalence,					
	minterm Boolean forms, sum of products canonical forms, minimization of Boolean functions,					
	applications of Boolean algebra to switching theory (using AND, OR and NOT gates),					
	Karnaugh maps.					
3	Trees, Binary tree, Spanning tree, Euler's Formula for connected Planar Graphs. Complete&					
	Complete Bibarate Graphs. Kuratowski's Theorem (statement only) and its use, Cut-sets,					
	Fundamental Cut-sets, and Cycles. Minimal Spanning Trees and Kruskal's Algorithm. Matrix					
	Representations of Graphs, Incidence Matrix, Circuit Matrix, Cut-Set Matrix, Adjacency Matrix,					
	Euler's Theorem on the Existence of Eulerian Paths and Circuits. Directed Graphs. In degree and					
	Out degree of a vertex. Weighted Graphs. Dijkstra's Algorithm					
4	Introductory Computability Theory-Finite State Machines and their Transition Table Diagrams,					
	Finite Automata, Moore and Mealy Machines, Grammars and Languages-Phrase-Structure					
	Grammars. Rewiting Rules, Derivations. SententialForms. Language generated by a Grammar.					
	Regular, Context-Free, and Context Sensitive Grammars and Languages. Regular sets, Regular					
	Expressions and the Pumping Lemma.Kleene's Theorem.					
Sugge	sted Readings:					
1. Tre	mblay, J.P. and Manohar, R. Discrete Mathematical Structures with Applications to Computer					

Science. Ist edition McGraw Hill Book Co., 2017.

2. Lepschutz, S. and Lipson, M. Linear Algebra. 5th edition, Tata McGraw Hill 2012.

3. Ram, B. Discrete Mathematics. Pearson Education, 2012.

4. Kenneth H. R. Discrete Mathematics and Its Applications, 7th edition, Tata McGraw Hill, 2011.

5. Liu, C. L. Elements of Discrete Mathematics. Tata McGraw Hill, 2000.

Course	MATHDCEC0424&425B Course Differentia					
Code		Name	Geometry			
Programme	M.A./M.Sc. Mathematics	Credits	5 (L-3, T-2, P-2)			
Hrs/Weeks	5	Total Hours	60			
Total Marks	100 (Class Int. Exam30 marks, Univ. Exa	m70 marks)				
Examination	amination 3 Hours Pre-requisite NIL					
		of course				
Course In this course, students will be imparted knowledge to enable them to understand sev						
Objective	concepts of Differential Geometry such as s	pace curves, sur	faces, curvatures, torsion,			
	developables and geodesics.					
Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Learn about the concepts of curvature, torsion, involutes and evolutes.					
	2: Familiarize with several concepts of tangent plane, Helicoids, metric and direction					
	coefficients.					
	3: Understand the concepts of developable surfaces.					
	4: Use the several notions of curvatures such as geodesic curvature and Gaussian					
curvatures.						
NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to						
attempt any five questions in all selecting at least one question from each section. All questions carry						
equal marks. Unit I will be taught via online mode. Also, candidates are required to attempt this						

paper with tensor method only.

COURSE SYLLABUS

Units	Content of Each unit					
1	Tensor Algebra: Difference between tensor and vector, Contraction, Inner Product,					
	Symmetric and skew-symmetric tensors, Reciprocal symmetric tensor, Relative tensor,					
	Alternate tensor, Isotropic tensor, Christoffel Symbols and Covariant differentiation, Ricci					
	tensor, Bianchi's identity.					
2	Space Curves: Metric tensor of the Euclidean space of three dimensions, Tangent to a curve,					
	Osculating plane, Serret Frenet formulae, Fundamental planes, Curvature of a curve, Torsion					
	of a curve, Contact between curves and surfaces, Locus of centre of spherical curvature,					
	Spherical Indicatrix, Tangent surface, involutes and evolutes, Helix.					
3	Surfaces in Space: Parametric Transformation, Curves on a surface, Tangent plane and					
	normal to the surface, First fundamental quadratic form of the surface, Angle between two					
	parametric curves, Angle between a parametric curve and any general curve of the surface,					
	Orthogonal Trajectories, Second fundamental tensor, Weingarten formulae.					
4	The Normal Curvature of a surface: Normal curvature of a surface, Principal directions,					
	Principal curvatures, Lines of curvature on a surface, Conjugate directions on a surface,					
	Asymptotic direction at a point of a surface, Mean curvature, Gaussian curvature, Minimal					
	surface, Gauss characteristic equation, Mainardi-Codazzi equations .					
	Geodesics: Normal property of geodesics, Torsion of a geodesic, Geodesic torsion of a curve,					
	Geodesic curvature of a curve.					
Sugge	Suggested Readings:					
1. Weatherburn, C. E. Differential Geometry of Three Dimensions, Cambridge University Press, 2016.						
2. Gra	ustein, W. C. Differential Geometry. Courier Corporation, 2012.					

Wilmore T. J. An Introduction to Differential Geometry, Dover Publications Inc., 2012.
 Pressley, A. Elementary Differential Geometry. Springer, 2002.

Course	MATHDCEC0424&425C	Course		M	athematical
Code	ode Nar		ne Modelling		odelling
Programme	M.A./M.Sc. Mathematics		Credits		5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours 60		60
Total Marks	al Marks 100 (Class Int. Exam30 marks, Univ. Exam.		n70 marks))	
Examination	3 Hours	Hours		te	NIL
				of course	
Course	The objectives of this course are to:				
Objective	• Enable students understand how mathematical models are formulated, solved and				
	interpreted.				
• Make students appreciate the power and limita		nitations of n	nathe	ematics in solving practical	
	real-life problems.				
	• Equip students with the basic mathematical modelling skills.				

Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Understand what a mathematical model is and explain the series of steps involved in					
	a mathematical modelling process.					
	2: Use applications of mathematical modelling through difference equations.					
	3: Understand and apply the concept of mathematical modelling through difference					
	equations in population dynamics, genetics and probability theory.					
	4: Apply the concept of mathematical modelling through graph theory					
NOTE: Elat	in the set the first the first set of the LINIT The set is distance and in the set of the set					

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit					
1	Simple situations requiring mathematical modelling, techniques of mathematical modelling, classifications, characteristics and limitations of mathematical models, some simple illustrations, mathematical modelling in population dynamics, mathematical modelling of epidemics through systems of ordinary differential equations of first order mathematical models in medicine, battles and international trade in terms of systems of ordinary differential equations					
2	The need for mathematical modelling through difference equations, linear growth and decay models, non-linear growth and decay models, basic theory of linear difference equations with constant coefficients, mathematical modelling through difference equations in economics and finance.					
3	Mathematical modelling through difference equations in population dynamics and genetics, mathematical modelling through difference equations in probability theory, miscellaneous examples of mathematical modelling through difference equations.					
4	Situations that can be modelled through graphs, mathematical models in terms of directed graphs mathematical models in terms of signed graphs, mathematical models in terms of weighted graphs.					
Sugge	sted Readings:					
1. Kap	Kapur J. N. Mathematical Modelling, 2nd edition, New Age International, 2015.					
2. Mee	2. Meerschaert, M. M. Mathematical Modelling. Academic Press, 2013.					
3. Rut	. Rutherford, A. Mathematical Modelling Techniques. Courier Corporation, 2012.					
A Cliv	va L. D. Principles of Mathematical Modelling, Elsevier, 2004					

4. Clive, L. D. Principles of Mathematical Modelling. Elsevier, 2004.

5. Bender, E. A. An Introduction to Mathematical Modelling. Courier Corporation, 2000.

Course	MATHDCEC0424&425D	Course	Adv	anced Abstract	
Code		Name	Alg	ebra	
Programme	M.A./M.Sc. Mathematics	Credits		5 (L-3, T-2, P-0)	
Hrs/Weeks	5	Total Hours		60	
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)				
Examination	3 Hours	Pre-requisite		NIL	
		of course			
Course Objective	The main objective of this course is to encourage students to develop a working knowledge of the central ideas of modules like cyclic modules, simple, semi-simple modules uniform modules, primary modules and theory of Noetherian and Artinian modules.				

Course	After completing this course, student is expected to learn the following:
Outcomes:	1: Explain the fundamental concepts of modules and their role in modern
	mathematics and applied contexts.
	2: Demonstrate accurate and efficient use of finitely generated Abelian groups.
	3: Apply the theorems: fundamental structure theorem of finitely generated modules
	over principal ideal domain, Noether- Lasker theorem, Hilbert basis theorem and
	Wedderburn - Artin theorem, Maschk's theorem
	CO4: Solve the problem using Nilradical and Jacobson radicals, operations on ideals,
	extension and contractions applied to diverse situations in physics, engineering and other
	mathematical contexts.
NOTE: Eight	questions will be set, two from each of the UNIT. The candidates are required to

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit					
1	Cyclic modules, simple and semi-simple modules, Schur's lemma, free modules,					
	fundamental structure theorem of finitely generated modules over principal ideal domain and					
	its applications finitely generated Abelian groups.					
2	Uniform modules, primary modules and Noether- Lasker theorem, Noetherian and					
	Artinianmodules and rings with simple properties and examples.					
3	Nilpotent ideals in Noetherian and Artinian rings, Hilbert basis theorem, Nakayama's					
	lemma, Nilradical and Jacobson radicals, operations on ideals, extension and contraction.					
4	Hom(R,R), opposite rings, Wedderburn-Artin theorem, Maschk's theorem, equivalent					
	statement for left Artinian rings having non-zero nilpotent ideals.					
Sugge	uggested Readings:					
Rotma	Rotman, J. J.Advanced Modern Algebra. 3rd edition. American Mathematical Soc., 2015.					
A . 4 . 4						

Atiyah, M. F. and Macdonald, I. G. Introduction to Commutative Rings. Sarat Book House, 2007. Curtis, C. W. and Reiner, I. Representation Theory of finite Groups and Associative Algebras.American Mathematical Society, 2006.

Lam, T. Y. Lectures on Modules and Rings. GTM Vol. 189, Springer-Verlag, 1999.

Bhattacharya, P. B., Jain, S. K. and Nagpaul, S. R. Basic Abstract Algebra. 2 nd edition, CambridgeUniversity Press, Indian edition, 1997.

Anderson, F. W. and Fuller, K. R. Rings and Categories of Modules. Springer-Verlag New York, 1992.

Cohn, P. M. Algebra, Vols. I, II & III, John Wiley & Sons, (Vol. I-1982, Vol. II- 1989, Vol-III1991.

Course	MATHDCEC0424&425E	Course	Nu	mber Theory
Code		Name		
Programme	M.A./M.Sc. Mathematics	Credits		5 (L-3, T-2, P-0)
Hrs/Weeks	5	Total Hours		60
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)			
Examination	3 Hours	Pre-requisite		NIL
		of course		

Course	The purpose of the course is to give a simple account of classical number theory,
Objective	prepare students to graduate-level courses in number theory and algebra, and to
	demonstrate applications of number theory. In this course, students will have a
	working knowledge of the fundamental definitions and theorems of elementary
	number theory, be able to work with congruence's, solve congruence equations and
	systems of equations with one and more variables, and be literate in the language and
	notation of number theory.
Course	After completing this course student is expected to learn the following:
	The completing this course, student is expected to reall the following.
Outcomes:	1: Understand the properties of divisibility and prime numbers, compute the greatest
Outcomes:	1: Understand the properties of divisibility and prime numbers, compute the greatest common divisor and least common multiples and handle linear Diophantine equations
Outcomes:	1: Understand the properties of divisibility and prime numbers, compute the greatest common divisor and least common multiples and handle linear Diophantine equations 2: Use the operations with congruence's, linear and non-linear congruence equations
Outcomes:	1: Understand the properties of divisibility and prime numbers, compute the greatest common divisor and least common multiples and handle linear Diophantine equations 2: Use the operations with congruence's, linear and non-linear congruence equations 3: Apply the theorems: Chinese Remainder Theorem, Lagrange theorem, Fermat's
Outcomes:	1: Understand the properties of divisibility and prime numbers, compute the greatest common divisor and least common multiples and handle linear Diophantine equations 2: Use the operations with congruence's, linear and non-linear congruence equations 3: Apply the theorems: Chinese Remainder Theorem, Lagrange theorem, Fermat's theorem, Wilson's theorem

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

M., primes,
nd Wilson,
n formula, e modulus,
aw. Jacobi ons, simple
ergent, best as, Hurwitz
ey & Sons,

COURSE SYLLABUS

2008.

3. Burton, D. M. Elementary Number Theory. Tata McGraw Hill Publishing House, 2006.

4. Hardy, G. H. and Wright, E. M. Theory of Numbers. Oxford Science Publications, 2003.

5. Davenport, H. Higher Arithmetic. Cambridge University Press, 1999.

SEMESTER-III CC Course

Course Code	MATHCC0431	Co Na	ourse ame	Part Equ App	ial ation lications	Differential with
Programme	M.A./M.Sc. Mathematics		Credits		4 (L-3, T-2	, P-0)
Hrs/Weeks	5		Total Hour	rs	60	

Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)			
Examination	3 Hours	Pre-requisite of	NIL	
		course		
Course	The objectives of this course are to	0:		
Objective	• Enable students understand how general PDEs solved			
	Make students appreciate the power and limitations of numerical solutions of PDEs.			
Course	After completing this course, student is expected to learn the following:			
Outcomes:	1: Understand the solution of first order PDEs by characteristics method,			
	Hamilton Jacobi's equations, Hopf-Lax formula etc.			
	2:Use applications of various solutions methods to solve			
	PDEs.			
	3: Understand and apply similarity solution methods.			
	4: Apply different methods to find numerical solutions of Elliptic, Parabolic and			
	Hyperbolic equations.			
NOTE: Eight	NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to			
attempt any f	ive questions in all selecting at leas	st one question from	n each section All questions	

attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Units	Content of Each unit
1	Green Function, Green function for Laplace equation, Harmonic function's properties, One
	and two dimensional wave equations, Heat equation, Method of separation of variables,
	Solution of Laplace equations in different co-ordinates system.
2	Non-linear First Order PDEs: Complete Integrals, Envelopes Characteristics, Hamilton-
	Jacobi Equations (Characteristic for the Hamilton-Jacobi Equation, Calculus of Variations,
	Hamilton's ODEs, Legendre's Transform, Hopf-Lax Formula, Weak Solution,
	Uniqueness), Conservation Laws (Lax-Oleinik Formula)
3	Solutions of PDEs by using separation of Variables Methods, Solution of PDEs by
	Transform Methods, Fourier Transform, Laplace Transform, Hankel Transform, Melin
	Transorm, Hopf-Cole Transformation, Hodograph Transform, Legendre Transform,
	Potential Function Technique, Burger Equation, Cauchy-Kovalevskaya Theorem.
4	Numerical Methods for Solving PDEs: Deriving difference equations, Finite Difference
	Approximations to Derivatives, Elliptic Equations, Laplacian Difference Equation,
	Solution of Laplace Equation, Liebmann's Iterative Methods, Poisson's Equation,
	Parabolic Equations, Heat Conduction Equation, Bender-Schmidt Method, Explicit
	Method, The Crank-Nicolson Implicit Method, Hyperbolic Equations, Solution of
	HyperbolicEquations.
Sugge	sted Readings:
1. Rei	d, W. T. Ordinary Differential Equations. John Wiley and Sons, New York, 1971.
2. Sim	mons, G. F. Differential Equations with Applications and Historical Notes. 2nd edition, Tata
McGra	aw Hill, New Delhi, 2016.
3. Ros	s, S. L. Differential Equations. 3rd edition, Wiley India, 2007.
4. Rais	singhania, M. D. Advanced Differential Equations. S. Chand & Company Ltd., New Delhi,
2001.	
5. P. H	Iartman, Ordinary Differential Equations, John Wiley, 1964.
6. E.A	Coddington and N. Levinson, Theory of ordinary differential equations, McGraw Hill, NY,
1955.	

Course	MATHCC0432	Course	Operations
Code		Name	Research
Programme	M.A./M.Sc. Mathematics	Credits	4 (L-3, T-2, P-0)
Hrs/Weeks	5	Total Hours	60
Total Marks	100 (Class Int. Exam30 marks, U	Jniv. Exam70 ma	rks)
Examination	3 Hours	Pre-requisite of	NIL
		course	
Course	This course is designed to introduce basic optimization techniques in order to get		
Objective	best results from a set of several possible solutions of different problems viz. linear		
	programming problems, transportation problem, assignment problem and		
	unconstrained and constrained problems etc.		
Course	After completing this course, student is expected to learn the following:		
Outcomes:	1: Understand linear programming problems and to find their solutions by using		
	different method.		
	2: Understand the network problem	ms.	
	3: Understand and solve different	queuing models.	
	4. Find optimal solution of linear	programming mod	lel using Game Theory. Also
	learn about sequencing problems.	_	-
NOTE: Fight questions will be set two from each of the UNIT. The candidates are required to			

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Linear Programming-Simplex and revised simplex Method, Dual Simplex method, Goal
	programming.
2	Network analysis, shortest path problem, Minimum Spinning tree, Maximum flow problem, Minimum cost flow problem, Project planning and control with PERT-CPM.
3	Queuing models: basic components of a queuing system, general birth-death equations, Integer Programming-Branch and Bound Technique.
4	Game theory: two persons zero sum game, game with saddle points, rule of dominance; algebraic, graphical and linear programming, concept of mixed strategy. Sequencing problems: processing of n jobs through 2 machines, n jobs through 3 machines, 2 jobs through m machines, n jobs through m machines.
Sugge	sted Readings:
1. Bes	aint, W.H. and Ramsey, A.S. A Treatise on Hydromechanics Part Ihydrostatics, Andesite
Press,	2017.
2. Kur	ndu, P.K., Cohen, I. M. and Dowling, R. D. Fluid Mechanics, 6th edition, Academic Press,
2015.	
3. O'N	Veil, M. E., and Chorlton, F. Ideal and Incompressible Fluid Dynamics. Ellis Horwood Ltd,
1986.	
4. Yua	n, S.W. Foundations of Fluid Mechanics. Prentice Hall of India Private Limited, New Delhi,
1976.	

5. Curle, N. and Davies, H. J. Modern Fluid Dynamics.Vol1, D Van Nostrand Company Ltd, London, 1968.

Course Code	MATHCC0433	Course Name	Functional Analysis
Programme	M.A./M.Sc. Mathematics	Credits	4 (L-3, T-2, P-0)

Hrs/Weeks	5	Total Hours	60		
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)				
Examination	3 Hours	Pre-requisite of	NIL		
		course			
Course	To familiarize with the basic tools	s of Functional Ana	alysis involving normed spaces,		
Objective	Banach spaces and Hilbert spaces, their properties dependent on the dimension and				
	the bounded linear operators from	one space to anoth	er.		
Course	After completing this course, stud	ent is expected to le	earn the following:		
Outcomes:	1: Verify the requirements of a no	orm, completeness	with respect to a norm, relation		
	between compactness and dimen	ision of a space, o	check boundedness of a linear		
	operator and relate to continuity, o	convergence of ope	rators by using a suitable norm,		
	compute the dual spaces.				
	2: Distinguish between Banach spaces and Hilbert spaces, decompose a Hilbert space				
	in terms of orthogonal complements.				
	3: Check totality of orthonormal sets and sequences, represent a bounded linear				
	functional in terms of inner product, classify operators into self-adjoint, unitary and				
	normal operators.				
	4: Extend a linear functional under suitable conditions, compute adjoint of operators,				
	check reflexivity of a space, abil	ity to apply unifor	m boundedness theorem, open		
	mapping theorem and closed grap	h theorem, check th	ne convergence of operators and		
	functional and weak and strong co	onvergence of seque	ences.		
NOTE: Eight	questions will be set, two from e	ach of the UNIT.	The candidates are required to		
attempt any fi	attempt any five questions in all selecting at least one question from each section. All questions carry				
equal marks. Unit I will be taught via online mode.					

COURSE SYLLABUS

Units	Content of Each unit
1	Metric Space, Euclidean Space, Pseudo-metric, sequences, Cauchy Sequences, Complete metric spaces and examples, Dimension of a linear space, Baire's theorem, Cantor intersection theorem and Banach fixed point principle, normed linear spaces.
2	Banach spaces : Normed Linear Space, Banach spaces, examples of Banach spaces and subspaces, Sequence of Scalars, Holder's Inequality, Minkowski's Inequality, Cauchy's Inequality, Euclidean and unitary space, Subspaces and Quotient Spaces of Banach Spaces, Riesz-Fisher Theorem.
3	Hilbert spaces : Inner Product Spaces, Hilbert spaces and examples, Schwarz Inequality, Parallelogram Law, Convex sets, Orthogonality, Pythagorean Theorem, Projection Theorem, Orthonormal sets, Bessel's inequality, Parseval's theorem, Characterization theorem for complete orthogonal sets, Riesz representation theorem for continuous linear functionals on a Hilbert space.
4	Adjoint operators, self-adjoint operators, Positive operator, normal and unitary operators, weak and strong convergence, completely continuous operators, Hahn-Banach theorem and its applications, uniform boundedness principle, open mapping theorem, closed graph theorem.
Sugge	sted Readings:
1. Sim	mons, G. F. Introduction to Topology and Modern Analysis. McGraw-Hill Pvt. Ltd. 2016.

2. Bachman, G. and Narici, L. Functional Analysis. Courier Corporation, 2012.

- 3. Conway, J. B. A Course in Functional Analysis. Springer, 2010.

4. Kreyszig, E. Introductory Functional Analysis with Applications. John Wiley, 2007.5. Royden, H. L. Real Analysis. MacMillan Publishing Co., Inc., New York, 4th edition, 1993.

Course	MATHCC0434		Course	Seminar Presentation
Code			Name	and Viva-Voce
Programme	M.A./M.Sc. Mathematics		Credits	4 (L-2, T-2, P-2)
Hrs/Weeks	6		Total Hours	72
Total Marks	100 (Class Int. Exam-30 m	arks, U	niv. Exam-70 marl	KS
Examination	3 Hours	Pre-re	quisite of course	NIL
Course	The purpose of this course is to enhance communication skills and presentation. How to face			
Objective	interviews in competitions.			
Course	After completing this course, student is expected to learn the following:			
Outcomes:	1: Will be able to present the subject in interviews.			
	2: Get ability to face interviews.			
	3: Skills to write subject in own way.			
	4: Get knowledge of preparing Dissertation, Thesis and Books.			
NOTE: Final S	NOTE: Final Seminar presentation will be in the presence of Departmental Faculties and Students of second			
semester. Final viva-voce will be in the presence of external examiner.				

Pattern		
1	A: Viva and Presentation of assigned / selected problem /topic by each student	
	in each of the other four papers to be evaluated internally throughout the semester	
	Total Marks : 7.5x4=30	
2	B :Viva –Voce concerning all other five papers of the semester to be evaluated	
	externally Total Marks : 70	

Skill Enhancement Elective Course

Course	MATHSEEC0435A		Course	Programming in C	
Code			Name		
Programme	M.A./M.Sc. Mathematics		Credits	0 (L-2, T-0, P-4)	
Hrs/Weeks	6		Total Hours	72	
Total Marks	100 (Class Int. ExamTheorem	ry-15/	Pract15 marks, Ui	niv. ExamTheory-35/Pract35)	
Examination	3 Hours	Pre-re	quisite of course	NIL	
Course Objective	The course objective is to familiarize the students with problem solving through C programming. The course aims to give exposure to basic concepts of the C-programming. The lab component of this course is designed to provide hands-on-training with the concepts.				
Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Classify and overview the programming languages and develop basic C programs,				
	to define data types and use them in simple data processing				
	2: Use various C-operators, expressions and input/output statements				
	3: Understand control flow using conditional branching and loop structures and the concept of array in problem solving4: Interprets the concepts of pointers, and classify functions and their usage				
NOTE: 1. Eig	NOTE: 1. Eight questions will be set, two from each of the UNIT. The candidates are required to				
attempt any fi	attempt any five questions in all selecting at least one question from each section. All questions carry				
equal marks. Unit I will be taught via online mode.					
2. University practical examination will be conducted in the presence of at least one external and one					
internal examiner provided by university.					

Units	Content of Each unit				
1	An overview of programming, programming languages, classification, C essentials program development, anatomy of a C function, variables, constants, expressions, assignment statements, formatting source files, continuation character, the pre-processor, scalar data types-declarations, different types of integers, different kinds of integer constants, floating point types, initialization, mixing types, explicit conversions-casts, data types				
2	Operators and expressions - precedence and associatively, unary plus and minus operators, binary arithmetic operators, arithmetic assignment operators, increment and decrement operators, comma operator, relational operators, logical operators, bit manipulation operators, bitwise assignment operators, cast operator, size of operators, conditional operator, memory operators, input/output functions.				
3	Control Flow - conditional branching, the switch statement, looping, nested loops, break and continue statements, goto statement, infinite loops, Arrays - declaring an array, arrays and memory, initializing arrays, encryption and decryption, multidimensional arrays, strings.				
4	Functions - passing arguments, declarations and calls, recursion, the main () function, passing arrays as function arguments. Pointers - pointer arithmetic, accessing array elements through pointers, passing pointers as function arguments, arrays of pointers.				
1. Bal 2. Bra 3. Dai House 4. Yas 5. Byr	 Balagurusamy, E. Programming in ANSI C. 3rdedition. TATA McGraw Hill, 2016. Brain W. K. and Ritchie D. M. C Programme Language. 2 nd edition, Pearson, 2015. Darnell, P. A. and Margolis, P. E. C: A Software Engineering Approach. Narosa Publishing, House (Springer International Student Edition), 2012. Yashavant, P. K. Let Us C. BPB Publication, 2008. Byrons, G. Programming With C. 2nd edition, Schaum's Series, 1996. 				
 Write a program (WAP) to understand concept of scanf and printf WAP to swap two nos. using third variable WAP to swap two nos. without using third variable. WAP to convert temperature from Fahrenheit into Celsius. WAP to find area and perimeter of rectangle. WAP to find largest of two nos. WAP to find largest of three nos. WAP to find whether no. is even or odd Using conditional operator find largest of three nos. WAP that will take four digit no. and find sum of digits. WAP to find roots of quadratic eq. WAP to find sum of first n natural nos. WAP to find average of n nos. WAP to find reverse of no. 					
16 11	AD to find reverse of no				

- $-1 \quad x < -5.0$ 17. WAP for the function f (x) using conditional operator $f(x) = \{0 - 5.0 \le x \le 5.0\}$
 - x > 5.0
- 18. WAP to compute $1+1/2+1/3+1/4+\dots+1/n$
- 19. WAP to display nos. which are divisible by n b/w 1 & 1000.
- 20. WAP to convert lowercase text to uppercase
- 21. WAP to generate Fibonacci series.
- 22. WAP to find nth term in Fibonacci series.
- 23. WAP to find factorial of no. using while, for, do-while loop.
- 24. WAP to check whether no. is prime or not
- 25. WAP to check whether no. is palindrome or not
- 26. WAP to display prime numbers in between two numbers a and b.
- 27. Print multiplication table of given no. using do while.
- 28. WAP to find whether given no. is Armstrong or not.
- 29. Write a menu driven program which has following option: factorial, prime, odd or even, exit
- **30. PRINT PATTERNs**

1	1	*
23	12	***
456	123	*****

- 31. WAP to convert decimal no into binary and vice-versa.
- 32. WAP to print following pattern
 - 1
 - 232
 - 34543 4567654
- 33. WAP to print following pattern
 - 1
 - 101
 - 10101
- 34. WAP to compute the following polynomial at any point $P(x) = x^3 x^5 + x^7 x^9 + \dots$
- 35. 1/2(x-1/x) + 1/2(x-1/x)2 + 1/2(x-1/x)3 + ... + n
- 36. $S = 1 + x^2 + x^4 + x^6 + \dots + n$
- 37. S = x x 3 / 3! + x 5 / 5! x 7 / 7! + ... n
- 38. Ackerman function: A(m,n) = n+1, m=0 A(m-1), m!=0, n=0 A(m-1, A(m,n-1)), m!=0, n!=0
- 39. WAP to find factorial of integer using recursion and without recursion
- 40. WAP to swap 2 nos. by call by reference
- 41. WAP to sort n numbers using array
- 42. To display nth no. stored in array
- 43. WAP to demonstrate what kind of operation can be performed on pointers.
- 44. WAP to pass 1-d array to function & using this function find 2 largest element
- 45. WAP to add two matrices.
- 46. WAP to multiply two matrices
- 47. WAP to find transpose of matrix
- 48. WAP to find greatest and smallest element in an array
- 49. WAP to insert an element at a location in an array
- 50. WAP to delete an element from a location in an array
- 51. Linear and Binary search
- 52. Bubble sorting
- 53. WAP to find 2nd largest and 2nd smallest an element in an array
- 54. WAP to input string from terminal & display it
- 55. WAP to find reverse of string

- 56. Enter two strings & compare them using inbuilt function.
- 57. To convert string to lowercase to uppercase
- 58. String concatenation
- 59. Display ascii value of individual character of string
- 60. To find a character in string, display location & no. of occurrences.
- 61. WAP C Program to Calculate the Simple Interest
- 62. WAP C Program to Find the GCD and LCM of Two Integers
- 63. WAP C Program to find HCF of a given Number using Recursion
- 64. WAP C Program to Calculate the Value of sin(x)
- 65. WAP C Program to Calculate the Value of cos(x)
- 66. WAP C Program to Calculate the Sum of cos(x) Series
- 67. WAP to find prime numbers in a given range
- 68. WAP C Program to Calculate the Mean, Variance & Standard Deviation
- 69. WAP C Program to evaluate the given Polynomial Equation
- 70. WAP C program to calculate the value of ${}^{n}C_{r}$

Course	MATHSEEC0435H	3	Course	Typesetting in	
Code			Name	Advanced Latex	
Programme	M.A./M.Sc. Mathematics		Credits	0 (L-2, T-2, P-2)	
Hrs/Weeks	6		Total Hours	60	
Total Marks	100 (Class Int. ExamThe	ory-15	/Pract15 marks, U	(niv. ExamTheory-35/Pract35)	
Examination	3 Hours	Pre-re	equisite of course	NIL	
Course	The purpose of this course	is to ac	quaint students with	the latest typesetting skills, which	
Objective	shall enable them to prepar	e high	quality typesetting	, beamer presentation and drawing	
	graphs				
Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Typeset mathematical formulas, use nested list, tabular & array environments.				
	2: Create or import graphics.				
	3: Use alignment command and multiline formulas, bibliography and citation, making				
	index and glossary.				
	4: Use beamer to create pr	resenta	tion and typeset maintenance	athematical Projects, Dissertation,	
	Thesis and Books.				
NOTE: 1. Eight questions will be set, two from each of the UNIT. The candidates are required to attempt					
any five questions in all selecting at least one question from each section. All questions carry equal					
marks. Unit I	marks. Unit I will be taught via online mode.				

2. University practical examination will be conducted in the presence of at least one external and one internal examiner provided by university.

Units	Content of Each unit
1	Preparing an input file, sentences and paragraphs, the document class, sectioning, display material, running Latex, changing the type style, producing mathematical symbols and
	mathematical formulae, arrays, delimiters, multiline formulae, putting one thing on other, spacing in math mode.
2	Defining command and environments, producing and including graphics in a Latex file, figures and other floating bodies, lining it up in columns, table of content, cross-reference, bibliography and citation, making index and glossary, slides, overlays and notes, letters.

3	Design it yourself: document class, page style, title page, customizing the style, line and page
	breaking, numbering, length, spaces and boxes, formatting with boxes, centring and flushing,
	list making environments, changing font type size and special symbols, picture, picture
	environments, picture objects, text, boxes, straight lines, arrow, stacks, circles, oval, framing,
	curve, grid, repeat patterns.
4	Making presentation slides in beamer class Latex, various styles in beamer presentation,
	dynamic slides. postscript macros for generic tex (pstrix): arguments, dimension, coordinates,
	angles, line styles, fill styles, custom styles, custom graphics, picture tools, text tricks, node
	and connection special tricks, basics of mathjax, mathjax configuration options.

1. Kottwitz, S. LaTeX Beginner's Guide. Packt Publishing Ltd., UK, 2011.

2. Leslie L. A Document Preparation System User's Guide and Reference Manual, AddisonWesley Publishing Company, 2001.

3. Tantau, T. User Guide to the Beamer Class, <u>http://latex-beamer.sourceforge.net</u>.

4. Oetiker, T. The Note So Short Introduction to LATEX2E, <u>https://tobi.oetiker.ch/lshort/lshort.pdf</u>

Course	MATHSEEC0435C	Course	Pro	gramming in SCILAB		
Code		Name				
Programme	M.A./M.Sc. Mathematics	Credits		0 (L-2, T-2, P-2)		
Hrs/Weeks	6	Total Hou	rs	50		
Total Marks	100 (Class Int. ExamTheory-15/I	Pract15 mar	rks, U	niv. ExamTheory-35/Pract35)		
Examination	3 Hours	Pre-requis	ite of	NIL		
		course				
Course	The course objective is to familiarize the students with problem solving through					
Objective	SCILAB. The course aims to give exposure to basic concepts of the SCILAB					
	programming. The course aims to design the SCILAB programs for various numerical methods.					
Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Overview and display format of SCILAB programs					
	2: Acquire knowledge of SCILAB					
	3: Learn about Matrix in SCILAB					
	4: Write SCILAB programs using loops and plotting of functions in 2D					
NOTE: 1. Eight questions will be set, two from each of the UNIT. The candidates are required to attempt						

NOTE: 1. Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

2. University practical examination will be conducted in the presence of at least one external and one internal examiner provided by university.

	COURSE STELADUS
Units	Content of Each unit
1	Overview of SCILAB, operators, display format, elementary built-in functions, working with
	variables, general commands, data types, data import, arrays, operations with arrays.
2	Getting started, The console, The editor, Docking, Using exec, Batch processing, Basic elements
	of the language, Creating real variables, Variable name, Comments and continuation lines,
	Elementary mathematical functions, Booleans, Complex numbers, Strings Dynamic type of
	variables,

Matrices, Overview, Create a matrix of real values, The empty matrix, Query matrices,
Accessing the elements of a matrix, The colon ":" operator, The dollar "\$" operator, Low-level
operations, Element-wise operations, Higher level linear algebra features
Looping and branching, The if statement, The select statement, The for statement, The while
statement, Functions, Defining a function, Function libraries, Managing output arguments,
Plotting, 2D plot Titles, axis and legends, Export,

 $1.\ https://mars.uta.edu/mae3183/simulation/introscilab_baudin.pdf$

2. https://www.scilab.org/sites/default/files/Scilab_beginners.pdf

3. https://www.scilab.org/sites/default/files/progscilab-v.0.10_en.pdf

Course	MATHSEEC0435I)	Course	Research Methodology	
Code			Name		
Programme	M.A./M.Sc. Mathematics		Credits	0 (L-2, T-2, P-2)	
Hrs/Weeks	6	6		60	
Total Marks	100 (Class Int. ExamTheory-15/Pract15 marks, Univ. ExamTheory-35/Pract35)				
Examination	3 Hours	Pre-requisite of course		NIL	
Course Objective	The objective of the course is to acquaint students with scientific research methods and quantitative techniques.				
Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Get ability to develop research quality				
	2: Get knowledge of preparing research paper, thesis and books.				
NOTE: 1. Eight questions will be set, two from each of the UNIT. The candidates are required to attempt					

NOTE: 1. Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

2. University practical examination will be conducted in the presence of at least one external and one internal examiner provided by university.

Units	Content of Each unit
1	Definition of research, Objectives and Motivations of Research, Importance of Research,
	Types of Research, Research methods versus methodology, Research process, Literature of
	Review, Formulation of Research Problem, Resources selection of a research problem,
	Formulation of Hypothesis, Research Design.
2	Types and sources of data, Data collection methods, observation and collection of data,
	methods of data collection, sampling methods, data processing and analysis strategies and
	tools.
3	Computer and Internet: Computer and its role in research, Use of statistical software in
	research, Computer Networking, Internet, Internet Security, Web Browsers and Web Search
	Engine.
4	Synopsis writing, Project/Report writing, Project Proposal, Research paper writing,
	References, Index, Citation, Citation Index, Impact Factor, h-index, Plagiarism, E-journals, E-
	library, Use of online databases of research literature in Physical Sciences: Scopus, Science-
	Direct, Elsevier Sciences.

- 1.Kothari C.R :Research Methodology methods and techniques ,second revised edition
- 2. Kumar R :Research Methodology a step by step guide for beginners
- 3. Gupta S.:Research Methodology Methods and Statistical Techniques
- 4. Gupta S P:Statistical Methods

5. Creswell W:Research Design, Qualitative, Quantitative and mixed methods approaches, third edition

5. Shortis T :Information Communication Technology

6. Burleson B.R& Green O.J :Handbook of Communication and Social Interaction Skills

Discipline Centric Elective Courses

Course	MATHDCEC0436A		Course	Difference Equations		
Code			Name			
Programme	M.A./M.Sc. Mathematics	Cre	edits	4 (L-3, 2-1, P-0)		
Hrs/Weeks	5	Tot	al Hours	60		
Total Marks	100 (Class Int. Exam30 marks,	Uni	v. Exam70 r	narks)		
Examination	3 Hours	Pre	-requisite of	NIL		
		course				
Course Objective	The objective of this course is to introduce the difference equations, solutions.					
	Fundamental theorems for existence and uniqueness difference equations.					
Course	After completing this course, student is expected to learn the following:					
Outcomes:	1: Understand the occurring of difference equations and linear difference equations.					
	Also will be able to solve these equations					
	2: Understand the non-linear difference equations and their linearization.					
	3: Understand the System of difference equations.					
	4. Understand the nonlinear difference equations and their systems.					
NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attemp						
	• 11 1 4 4 1 4	· · - · ·	£	- 4 ¹ - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		

any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Units	Content of Each unit
1	Introduction, difference calculus, difference operators, Greens function, approximate
	summations, Linear difference equations of first order, existence and uniqueness of
	solutions, linear difference equations with constant coefficients,
2	Equations with variables coefficients, Non-linear equation that can be linearised. The z- transform, Properties of z-transform, Initial and final value theorem, General solution of second order homogeneous difference equation, Matrix method for solving linear
	difference equations.
3	Systems of linear difference equations, qualitative behavior of solutions to linear difference equations, Generating function, Properties of generating function, Exponential generating function, Recurrence relation.
4	Nonlinear difference equations (Map): Steady states and their stability, the logistic difference equation, systems of nonlinear difference equations, stability criteria for second order equations, stability criteria for higher order system, Critical points, Lagrange's identity, Green's formula, Abel's formula.

1. Walter G. Kelly and Allen C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Harcourt Brace Joranovich Publishers, 1991.

2. Calvin Ahlbrandt and Allen C. Peterson, Discrete Hamiltonian System, Difference Equations,

Continued fraction and Riccati equations, Kluwer, Bostan, 1996.

Course Code	MATHDCEC0436B		Course		Measure	Theory
			Name		and Integ	ration
Programme	M.A./M.Sc. Mathematics Cre		redits	4 ((L-3, T-2, P-0)	
Hrs/Weeks	5	To	otal Hours	60		
Total Marks	100 (Class Int. Exam30 ma	arks, Univ.	Exam70 ma	rks))	
Examination	3 Hours Pre-requisite of course NIL					
Course Objective	Measure theory provides a foundation for many branches of mathematics such as harmonic analysis, ergodic theory, theory of partial differential equations and probability theory. It is a central, extremely useful part of modern analysis, and many further interesting generalizations of measure theory have been developed.					
Course Outcomes:	After completing this course 1: Use the concepts of meas 2: State and explain the cons 3: Apply the theorems of mo 4: Describe the construction	e, student i urable set struction of onotone and of produc	s expected to 1 and measurabl f the Lebesgue d dominated co t measure and	earr e fu e int onve to a	n the following inction egral and use it ergence and Fa apply Fubini's t	: t tou's lemma heorem

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Length of an open set, concept of measure, Lebesgue outer measure and measurable sets, example of non-measurable set, Sigma algebra, Borel sets, and –sets, Outer and inner regularity of Lebesgue measure.
2	Set function, abstract measure spaces, properties of measures, some examples of measures, measurable spaces, measurable functions, combinations of measurable functions, and limits of measurable functions.
3	Review of Riemann integral, integrable simple functions, the Lebesgue integration of a measurable function, integration with respect to a measure.
4	Almost everywhere convergence, convergence in measure, Fatou's Lemma, monotone and dominated convergence theorems.
a	

Suggested Readings:

- 1. Berberian, S. K. Measure and Integration. AMS Chelsea Publications, 2011.
- 2. Royden, H. L. and Fitzpatrick P. M. Real Analysis. 4th edition, Pearson India, 2010.
- 3. Barra, G. de. Measure Theory and Integration. New Age International (P) Ltd., 2009.
- 4. Rana, I. K. An Introduction to Measure and Integration. 2nd edition, Narosa Publishing House, 2004.

5. Folland, G. B. Real Analysis. John Wiley & Sons, Inc., New York, 1999.

6. Hewitt, E. and Stromberg, K. Real and Abstract Analysis. Springer-Verlag, New York, 1975.

Course	MATHDCEC0436C	Course	Fuzzy set Theory	
Code		Name		
Programme	M.A./M.Sc. Mathematics	Credits	4 (L-3, T-2, P-0)	
Hrs/Weeks	5	Total Hours	60	
Total Marks	100 (Class Int. Exam30 marks, U	Jniv. Exam70 marks)		
Examination	3 Hours	Pre-requisite of course	NIL	
Course Objective	The course aims to introduce students to fundamental concepts in fuzzy sets, fuzzy relations, arithmetic operations on fuzzy sets, probability theory, fuzzy logic and its applications.			
Course Outcomes:	 After completing this course, student is expected to learn the following: 1: Construct appropriate fuzzy numbers corresponding to uncertain and inconsistent collected data. 2: Understand the basic concepts of t- norms, t- conforms and operation of - cut interval. 3: Use the concepts of approximation of triangular fuzzy number, operations of trapezoidal fuzzy number, bell shape fuzzy number, crisp function and its applications. 4: Analyse the Integration and differentiation of fuzzy function product set, and understand the basic concepts of composition of fuzzy relation, fuzzy graph, projection 			
NOTE: Eight	questions will be set, two from each	h of the UNIT. The candi	dates are required to attempt	

any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

Units	Content of Each unit
1	Concepts of fuzzy set, standard operations of fuzzy set, fuzzy complement, fuzzy union, fuzzy
	intersection, other operations in fuzzy set, t- norms and tconorms. Interval, fuzzy number,
	operation of interval, operation of - cut interval, examples of fuzzy number operation.
2	Definition of triangular fuzzy number, operation of triangular fuzzy number, operation of
	general fuzzy numbers, approximation of triangular fuzzy number, operations of trapezoidal
	fuzzy number, bell shape fuzzy number, function with fuzzy constraint, propagation of fuzziness
	by crisp function, fuzzifying function of crisp variable, maximizing and minimizing set,
	maximum value of crisp function.
3	Integration and differentiation of fuzzy function product set, definition of relation,
	characteristics of relation, representation methods of relations, operations on relations, path and
	connectivity in graph, fundamental properties, equivalence relation, compatibility relation, pre-
	order relation, order relation, definition and examples of fuzzy relation, fuzzy matrix, operations
	on fuzzy relation.
4	Composition of fuzzy relation, - cut of fuzzy relation, projection and cylindrical extension,
	extension by relation, extension principle, extension by fuzzy relation, fuzzy distance between
	fuzzy sets, graph and fuzzy graph, fuzzy graph and fuzzy relation, - cut of fuzzy graph.
Sugge	sted Readings:
1. Mol	nan, C. An Introduction to Fuzzy Set Theory and Fuzzy Logic. Anshan Publishers, 2015.
2. Lee	K. H. First Course on Fuzzy Theory and Applications. Springer International Edition. 2005.
0.17	

- Yen, J., Langari, R. Fuzzy Logic Intelligence, Control and Information. Pearson Education, 1999.
 Zimmerman, H.J. Fuzzy Set Theory and its Applications. Allied Publishers Ltd., New Delhi, 1991.

Course	MATHDCEC0436D		Course	Introduction to
Code			Name	Cryptography
Programme	M.A./M.Sc. Mathematics		Credits	4 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30 ma	arks, Univ. I	Exam70 marks)	
Examination	3 Hours Pre-requisi		ite of course	NIL
Course Objective	The purpose of the course is to give a simple account of cryptography. Upon completion of the course, students will have a working knowledge of the fundamental definition and theorems of elementary congruences, solve congruence equations and systems of equations with one and more variables. They will understand the language, notation of Caesar Cipher and explored to cryptography. We will also discussion on Diffie-Hellma RSA public key cryptosystem.			yptography. Upon completion of the fundamental definitions nce equations and systems of tand the language, notation of discussion on Diffie-Hellman
Course Outcomes:	 After completing this course, student is expected to learn the following: 1: Understand the operations with congruence's, linear and non-linear congruence equations. 2: Use the basics of RSA security and be able to break the simplest instances and analyse the basic concepts of remote coin flipping, elliptic curve based cryptography. 3: Apply the theorems: Fermat's last theorem, prime number theorem and zeta function. 4: Understand and use the numbers: Perfect numbers, Fermat numbers, Mersenne primes and amicable numbers, Fibonacci numbers. 			
NOTE: Eight	questions will be set, two from	m each of the	e UNIT. The can	didates are required to attempt

ons in all selecting at least one question from each section. marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Modular arithmetic, congruence, primitive roots, cryptography introduction, Caesar Cipher, Diffie-Hellman RSA public key cryptosystem, Knapsack cryptosystem, application of primitive roots to cryptography.
2	Applications of cryptography in primality testing and factorization of large composite numbers, remote coin flipping. Elliptic curve based cryptography.
3	Perfect numbers, Fermat numbers, Mersenne primes and amicable numbers, Fibonacci numbers, representation of integers as sum of Squares.
4	Linear and non-linear Diophantine equations, Fermat's last theorem, prime number theorem and zeta function.
Sugge	sted Readings.

Suggested Readings:

1. Tilborg, H. C. A. Fundamentals of Cryptology. Springer, 2013.

2. Buchmann, J. A. Introduction to Cryptology.Springer Science & Business Media, 2012

3. Burton, D. M. Elementary Number Theory, Tata McGraw Hill Publishing House, 2006.

4. Menezes, A. J., V., Oorschot, P. C. and Vanstone, S. A. Handbook of Applied Cryptography. CRC Press, 1996.

5. Koblitz, N. A Course in Number Theory and Cryptography. 2 nd edition Springer, 1994.

6. Simmons, G. J. Contemporary Cryptology, The Science of Information Integrity.New York, IEEE Press, 1992

SEMESTER-IV

Course	MATHCCO	441	Course	Mathematical Statistics	
code			Name		
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)	
Hrs/Weeks	5		Total Hours	60	
Total Marks	100 (Class Int. E	Exam30 m	arks, Univ. Exam7	70 marks)	
Examination	3 Hours	Pre-requis	ite of course	NIL	
Course Objective	The aim of the course is to enable the students with understanding of various types of measures, various types of probability distributions and testing of hypothesis problems. It aims to equip the students with standard concepts of statistical techniques and their utilization.				
Course	After completing this course, student is expected to learn the following:				
Outcomes:	 Explore the basic ideas about measures of central tendency, dispersion, skewness and kurtosis with their applications and basic idea about probability theory. Demonstrate the understanding of random variable, expectation, variance and some discrete distributions. Explain the different types of continuous distributions and their utilization. Deal with formulation of hypotheses as per situations and their testing. 				
NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.					

Units	Content of Each unit
1	Measures of central tendency and dispersion, moments, measures of skewness and kurtosis,
	correlation and regression. axiomatic approach to the theory of probability, sample space, additive
	and multiplicative law of probability, conditional probability. Definition and properties of random
	variables, discrete and continuous random variables, probability mass and density functions,
	distribution function. Concepts of bivariate random variables, Bayes theorem, Booles Inequality,
	Mathematical expectation: Definition and its properties. variance, covariance, moment generating
	function- definitions and their properties.
2	Discrete distributions: Binomial, Poisson and Geometric, Negative binomial, Power series
	distributions with their properties.
3	Continuous distributions: uniform, exponential, gamma, beeta and normal distributions with their
	properties, Central Limit Theorem, Chi-Square distribution.
4	Statistical estimation, Theory of estimetors, Max. likelihood, Testing of hypothesis:
	Null and alternative hypotheses, simple and composite hypotheses, two types of errors, t, F and Chi-Square as sampling distribution and applications.
Sugge	sted Readings:
1. Me	yer, P. L. Introductory Probability and Statistical Applications. 2nd edition, Addison-Wesley
Publis	hing Company, 2017.
2. Gup	ota, S. C. and Kapoor, V. K. Fundamentals of Mathematical Statistics. Sultan Chand & Sons, 2014.
3. Mo	od, A. M., Graybill, F. A. and Boes, D. C. Introduction to the Theory of Statistics, Tata McGraw
Hill, 2	014.
4. Spie 5. Bais	egel, M. R., Schiller, J. J. and Srinivasan, R. A. Probability and Statistics. Tata McGraw-Hill, 2014. snab, A. P. and Jas, M. Element of Probability and Statistics, Tata McGraw Hill, 1993.

Course	MATHCC0442	Course		Adva	nced Fluid Dynamics
Code		Name			-
Programme	M.A./M.Sc. Mathemati	CS	Credits		5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total H	ours	60
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)				
Examination	3 Hours	Pre-requis	ite of cou	irse	NIL
Course	The objective of this course is to provide a treatment of topics in magneto hydrodynamics,				
Objective	boundary layer theory and an appreciation of their application to real world problems.				
Course	After completing this course, student is expected to learn the following:				
Outcomes:	1: Understand the stress	s tensors			
	2. Understand the vorte	x motion			
	3. Understand the boundary layer theory.				
	4: Understand the magneto-hydrodynamics.				
NOTE: Eight	questions will be set, tw	o from each of	the UNIT	The ca	ndidates are required to attempt

any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Motion of sphere through liquid at rest at infinity, Liquid streaming past a fixed sphere, Motion of concentric sphere, Three dimensional source and sink, Doublet, Image of source with respect to sphere and plane.
2	Vortexmotion and its elementary properties, Vortex filament, vortex doublet, vortex pair, image of vortex with respect to plane and circle, Kelvin's proof of permanence Motions due to circular and rectilinear vortices, Spiral vortex, Rectilinear vortex, Karman's vortex street, Kirchhoff vortex theorem.
3	Boundary Layer Theory: Prandtls' boundary layer theory and its importance, Drag and lift, The boundary layer equation in two dimensional flow. The boundary layer flow over a flat plate. Karman's integral equation, Application of the boundary layer in absence of pressure gradient. Application of the Karman's integral equation to boundary layer with pressure gradient : Karman momentum integral equation, Vorticity equation.
4	Stresses in Fluids: Strain and stress tensor, symmetry of stress tensor, transformation of strain components in two dimension, principal stress and principal stress direction, Navier Stokes equation, Reynold's Number, Prandtl number, Weber number, Steady flow between parallel planes, Laminar flow between parallel plates, Steady flow through a cylindrical pipe, Hagen-Poiseuille flow.
Sugge	sted Readings:

1. Allen Jeffery – Magnetohydrodynamics (Oliver & Boyd)

2. P. C. Kendell and C. Plumton – Magnetohydrodynamics with hydrodynamics – Vol 1 (Pergamon Press).

3. F. Chorlton – A Text Book of Fluid Dynamics.

4. M. D. Raisinghania& R.S. Agarwal – Advanced Hydrodynamics & Fluid Dynamics.

Course	MATHCC0443	Course	Project/Dissertation	and
Code		Name	Viva-Voce	
Programme	M.A./M.Sc. Mathematics	Credits	8 (L-0, T-0, P-0)	
Hrs/Weeks	8	Total Hours	60	
Total Marks	100 (Periodic presentation:	30 marks E	xternal Evaluation -70 marks)	

Examination	3 Hours	Pre-requisite of course	NIL
Course	The purpose of the	his course is to enhance	writing and communication skills,
Objective	presentation. How	to present subject and ongoin	ng researches.
Course	After completing this course, student is expected to learn the following:		
Outcomes:	1: Will be able to present research work in the field.		
	2: Get ability to write subject in own way.		
	3: Skills to know future of the subject.		
	4: Get knowledge of preparing Dissertation, Thesis and Books.		

NOTE: Two periodic presentations of project will be in the presence of Departmental Faculties and Students of third semester. One presentation will be at the end of 6^{th} weeks and the second presentation will be at the end of 12^{th} week.

Total Marks: $10 \times 2 = 20$

B :Viva –Voce concerning of project and other papers will be evaluated in the presence of one internal and at least one external examiner

Total Marks : 30

Pattern

1	Project/Dissertation should be submitted in the university for external evaluation. Plagiarism must be less than 25% Total Marks : 50
2	One of the teacher will be chosen as supervisor under whose guidance the student will complete is project work. He may choose two faculties one known as supervisor and other will know co-supervisor.

Discipline Centric Elective Courses

Course	MATHDCEC0444&445A	Co	ourse	Int	egral Equations
code		Na	ame		
Programme	M.A./M.Sc. Mathematics		Credits		5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Ho	ırs	60
Total Marks	100 (Class Int. Exam30 marks, Univ	v. Ex	am70 ma	rks)	
Examination	3 Hours		Pre-requi	site	NIL
			of course		
Course	In this course we study in detail about	inte	gral equati	ons ar	nd calculus of variations.
Objective	Integral equations find numerous app	olicat	tions in rea	ıl life	physical problems. The
	main objective of the course is to make the learner familiarize with resolvent kernel,				
	successive approximation, solution of homogeneous Fredholm integral equation for				
	solving integral equations and variational problems. Differential equations can			rential equations can be	
	studied for their solutions by transforming them into integro-differential equ		ro-differential equations		
-	using Laplace transform.				
Course	After completing this course, student is expected to learn the following:			he following:	
Outcomes:	1: Use the concept of different kernel	s and	l technique	es for	solving various kinds of
	integral equations.	_			
	2: Find the solutions of Volterra integ	ral e	quations us	sing N	leumann series method.
	3: Understand the relation between differential and integral equations.				
	4: Understanding of Hilbert Schmidt theorem and solutions by using symmetric				
	kernels.				
NOTE: Eight	NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to				ndidates are required to

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Solution of Fredholm Integral Equations: Solution of Homogeneous Fredholm Integral
	Equation of the second kind with separable, Orthogonality and Reality of Eigen functions,
	Eigen values of Symmetric kernel, Determination of Eigen functions, Determination of Eigen
	values and Eigen functions of homogeneous equations, Fredholm Integral Equation with
	separable kernel, Complex Hilbert Space, Orthonormal System of functions, Gram-Schmidt
	Orthonormalization Process, Schwarz Inequality, Bessel's Inequality, Riesz-Fischer
	Theorem, Symmetric Kernel, Iterated Kernel, Mercer's Theorem, Hilbert's Theorem,
	Solution of Fredholm Integral Equation of first kind
2	Solution of Fredholm Integral Equation of second kind by Successive Substitution: Solution
	of Volterra Integral Equation of second kind by Successive Substitution, Solution of
	Fredholm Integral Equation of second kind by Successive Approximation, Reciprocal kernel,
	Determination of Iterated kernel and resolvent kernel, Method of Successive Approximation,
	Reciprocal Function, Volterra's Solution of Fredholm Integral Equation of second kind,
	Reciprocal kernel of Volterra Integral Equation, Determination of resolvent kernel of
	Volterra Integral Equation, Solution of Volterra Integral Equation, Integral Equation by
2	Successive Approximation method
3	Classical Fredholm Theory: Fredholm's Fundamental Relations, Hadamard's Theorem,
	Convergence of Fredholm's Determinant and Fredholm First Minor, Fredholm Fundamental Theorems, Eredholm's Second Fundamental Theorems, Evistence of Figen value
	Orthogonality Theorem
	Orthogonality Theorem
4	Integral Transform Method: Some special types of Integral Equations Application of
•	Laplace Transform to determine the solutions of Volterra Integral Equations, Application
	type kernels Abel Integral Equation Fourier Transform Application of Fourier Transform
	to determine the solutions of Singular Integral Equations. Mellin Transform, Fox's Integral
	Equation
Sugge	sted Readings:
1. Wa	zwaz, A. M. A First Course in Integral Equations. 2 nd edition World Scientific Publishing
Co. 20	015.
2. Kan	wal, R. P. Linear Integral Equation. Theory and Techniques. Academic Press, 2014.
3. Gelt	fand, I. M. and Fomin, S. V. Calculus of Variations. Courier Corporation, 2012.
1 Hild	debrand F. B. Method of Applied Mathematics, Courier Corporation, 2012

4. Hildebrand, F. B. Method of Applied Mathematics, Courier Corporation, 2012. 5. Raisinghania M. D. Integral Equation & Boundary Value Problem. S. Chand Publishing, 2007.

6. Jerri, A. Introduction to Integral Equations with Applications, John Wiley & Sons, 1999.

Course	MATHDCEC0444&445B		Course	Theory of Elasticity
code			Name	
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)			
Examination	3 Hours Pre-re		quisite of course	NIL
Course	This course aims to familiarize the students with tensors and the principles and basic			
Objective	equations of elasticity. The course will expose the students to two dimensional problems			
	in Cartesian and polar coordinates.			

Course	After completing this course, student is expected to learn the following:			
Outcomes:	1: Use the indicial notation and knowledge of tensor			
	2: Analyse strain, stress and deformation			
	3: Understand the basic principles and field equations of linear elastic solids			
	4: Formulate the solution strategies of various two dimensional problems			
	5: Analyse the propagation of surface waves			
NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt				
any five ques	any five questions in all selecting at least one question from each section. All questions carry equal			

any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

1 Cartesian tensor: Coordinate transformation, Cartesian tensor of different order,	sum or
difference and product of two tensors. contraction theorem, quotient law, symmetric	& skew
symmetric tensors, Kronecker tensor, alternate tensor and relation between them	, scalar
invariant of second order tensor, eigen values & vectors of a symmetric second order	tensor,
gradient, divergence & curl of a tensor field. Analysis of strain: affine transform	nations,
infinitesimal affine transformation, geometrical interpretation of the components of stra	ain.
2 Strain quadric of Cauchy, principal strains and invariants, general infinitesimal defor	rmation.
Saint- Venant's equations of compatibility. Analysis of stress: stress tensor, equa	tions of
equilibrium, transformation of coordinates, stress quadric of Cauchy, principal str	ess and
invariants, maximum normal and shear stresses.	
3 Equations of elasticity: Generalized Hooke's law, homogeneous isotropic media, elastic	e moduli
for isotropic media, equilibrium and dynamic equations for an isotropic elastic solie	d, strain
energy function and its connection with Hooke's law, Beltrami-Michell compatibility eq	uations.
4 Two-dimensional problems: Plane strain, plane stress, generalized plane stress, Airy	's stress
function, general solution of bi-harmonic equation, stresses and displacements in t	erms of
complex potentials, propagation of waves in an isotropic elastic solid medium, waves of	dilation
and distortion, elastic surface waves such as Rayleigh and Love waves.	
Suggested Readings:	
1. Sadd, M. H. Elasticity: Theory, Applications and Numerics. Academic Press, 2014.	

2. Love, A. E. H. A Treatise on Mathematical Theory of Elasticity. Cambridge [Eng.] University Press, 2013.

3. Timoshenko, S. P. and Goodier, J. N. Theory of Elasticity. New York McGraw-Hill, 2010.

4. Narayan, S. Text Book of Cartesian Tensors. S. Chand & Co., 1968.

5. Sokolnikoff, I. S. Mathematical Theory of Elasticity. McGraw-Hill Inc, 2nd edition, 1956.

Course	MATHDCEC04448	2445C	Course	Tensors and
code			Name	General Relativity
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)			
Examination	3 Hours	Hours Pre-requisite of course		NIL
Course	The objectives of this course are to study tensor and general theory of relativity.			
Objective	-			

Course Outcomes:	 After completing this course, student is expected to learn the following:1: Understand tensor and symbols used for tensor. 2. Understands the Riemannian metric. 2: Understands the Einstein's field equations. 3: Understand the keplers law and Schwarzschild external solution.
NOTE: Eight	questions will be set, two from each of the UNIT. The candidates are required to attempt
any five ques	tions in all selecting at least one question from each section. All questions carry equal

marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Transformation of coordinates, Tensors, Algebra of Tensors, Symmetric and skewsymmetric
	Tensors, Contraction of tensors and quotient law.
2	Riemannian metric, Christoffel Symbols, Covariant derivatives, Intrinsic derivatives and
	geodesics. Riemann-Christoffel curvature tensor and its symmetryproperties. Bianchi identities
	and Einstein tensor.
3	Review of the special theory of relativity and the Newtonian Theory of gravitation, Principles
	of equivalence and general covariance, geodesic principle, Newtonian approximation of
	relativistic equations of motion. Einstein's field equations and its Newtonian approximation.
4	Schwarzschild external solution and its isotropic form, Planetary orbits and analogues of
	Kepler's Laws in general relativity. Advance of perihelion of a planet, Bending of light rays
	in gravitational field, gravitational red-shift of spectral lines. Radar echo delay.
Sugge	sted Readings:
1. C. I	E. Weatherburn. An Introduction of Riemannian Geometry and Tensor Calculus,
Can	nbridgeUniversity, Press, 1950.
2. H. S	Stephani, Genereal Relativity. An Introduction of the theory of the gravitational field.
Can	abridge University Press 1982

CambridgeUniversity Press, 1982. 3. A. S. Eddington, The Mathematical Theory of Relativity, CambridgeUniversity, Press, 1965.

Course	MATHDCEC0444&445D		Course	Information Theory
code			Name	
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30	marks, Univ	. Exam70 marks)	
Examination	3 Hours	Pre-requisite	e of course	NIL
Course	The objective of this course is to introduce basic and advanced topics in information			
Objective	theory. This course further explains the		e different types o	f entropies, codes, discrete and
	continuous channels and their applications.			
Course	After completing this course, student is expected to learn the following:			
Outcomes:	1: Understand the basic concepts of information theory, different types of entropies with			
	their properties and applications.			
	2: Analyse how different coding techniques will perform in different situations.			in different situations.
	3: Understand about discrete channels and their properties with applications.		es with applications.	
	4: Understand about continuous channels and their properties with applications.			

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit		
1	Measure of information – axioms for a measure of uncertainty, the Shannon entropy and its		
	properties. joint and conditional entropies, transformation and its properties, axiomatic		
	characterization of the Shannon entropy due to Shannon and Fadeev.		
2	Noiseless coding - ingredients of noiseless coding problem, uniquely decipherable codes,		
	necessary and sufficient condition for the existence of instantaneous codes, construction of		
	optimal codes.		
3	Discrete memory less channel - classification of channels, information processed by a channel,		
	calculation of channel capacity, decoding schemes the ideal observer, the fundamental theorem		
	of information theory and its strong and weak converses.		
4	Continuous channels - the time-discrete Gaussian channel, uncertainty of an absolutely		
	continuous random variable, the converse to the coding theorem for time-discrete Gaussian		
	channel, the time-continuous Gaussian channel, bandlimited channels.		
Sugge	sted Readings:		
1. Ash	, R. B. Information Theory. Courier Corporation, 2012.		
2. Reza, F.M. An Introduction to Information Theory. Courier Corporation, 2012.			
3. Hankerson, H. D., Harris, G. A. and Johnson, P. D. Introduction to Information Theory and Data			
Comp	ression. Chapman and Hall/CRC, 2nd edition, 2003.		
· · · •			

4. Aczel, J. and Daroczy, Z. On Measures of Information and their Characterizations. Academic Press, New York, 1975.

Course	MATHDCEC0444&04	145E	Course	Bio-Mathematics
code			Name	
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30 marks	, Univ. l	Exam70 marks)	
Examination	3 Hours Pre-req		uisite of course	NIL
Course	The objective of this course is to introduce basic and advanced topics in information			
Objective	theory. This course further explains the different types of entropies, codes, discrete and			
	continuous channels and their applications.			
Course	After completing this course, student is expected to learn the following:			
Outcomes:	1: Understand the basic concepts of information theory, different types of entropies with			
	their properties and applications.			
	2: Analyse how different coding techniques will perform in different situations.			
	3: Understand about discrete channels and their properties with applications.			
	4: Understand about continuous channels and their properties with applications.			
NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt				
any five questions in all selecting at least one question from each section. All questions carry equal				
marks. Unit I	marks. Unit I will be taught via online mode.			

COURSE SYLLABUS

Units Content of Each unit

1	Measure of information – axioms for a measure of uncertainty, the Shannon entropy and its properties. joint and conditional entropies, transformation and its properties, axiomatic characterization of the Shannon entropy due to Shannon and Fadeev.					
2	Noiseless coding - ingredients of noiseless coding problem, uniquely decipherable codes,					
	necessary and sufficient condition for the existence of instantaneous codes, construction of					
	optimal codes.					
3	Discrete memory less channel - classification of channels, information processed by a channel,					
	calculation of channel capacity, decoding schemes the ideal observer, the fundamental theorem					
	of information theory and its strong and weak converses.					
4	Continuous channels - the time-discrete Gaussian channel, uncertainty of an absolutely					
	continuous random variable, the converse to the coding theorem for time-discrete Gaussian					
	channel, the time-continuous Gaussian channel, band-limited channels.					
Sugge	sted Readings:					
1. Ash	1. Ash, R. B. Information Theory. Courier Corporation, 2012.					
2. Reza, F.M. An Introduction to Information Theory. Courier Corporation, 2012.						
3. Har	3. Hankerson, H. D., Harris, G. A. and Johnson, P. D. Introduction to Information Theory and Data					

Compression. Chapman and Hall/CRC, 2nd edition, 2003.

4. Aczel, J. and Daroczy, Z. On Measures of Information and their Characterizations. Academic Press, New York, 1975.

Course	MATHDCEC0444&	0445F	Course	Mathematics for	
code			Name	Finance and Insurance	
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)	
Hrs/Weeks	5		Total	60	
			Hours		
Total Marks	100 (Class Int. Exam30 mar	rks, Univ. E	xam70 mar	ks)	
Examination	3 Hours Pre-requisite of		ite of course	NIL	
Course	This course introduces the ba	asic concep	ts of Financia	al Management such as Insurance	
Objective	and Measurement of returns	under uncer	tainty situatio	ons. The philosophy of this course	
	is that Time value of Money	- Interest ra	te and discou	int rate play a fundamental role in	
	Life Insurance Mathematics -	- Construct	ion of Morali	ty Tables.	
Course	After completing this course,	student is e	expected to le	arn the following:	
Outcomes:	1: Demonstrate knowledge of the terminology related to nature, scope, goals, risks and			to nature, scope, goals, risks and	
	decisions of financial management.				
	2: Predict various types of returns and risks in investments and take necessary protective				
	measures for minimizing the risk.				
	3: Develop ability to understand, analyse and solve problems in bonds, finance and				
	insurance.				
	4: Build skills for computation of premium of life insurance and claims for general				
	insurance using probability distributions.				
NOTE: Eight	questions will be set, two from	n each of the	e UNIT. The	candidates are required to attempt	
any five ques	tions in all selecting at least of	one question	n from each s	section. All questions carry equal	
marks. Unit I	will be taught via online mode	marks. Unit I will be taught via online mode.			

Units	Content of Each unit
1	Financial Management overview. Nature and scope of financial management. Goals and main
	decisions of financial management. Difference between risk, Speculation and gambling. Time

	value of Money - Interest rate and discount rate. Present value and future value discrete case as well as continuous compounding case. Annuities and its kinds.
2	Meaning of return. Return as Internal Rate of Return (IRR). Numerical methods like Newton Raphson method to calculate IRR. Measurement of returns under uncertainty situations. Meaning of risk. Difference between risk and uncertainty. Types of risks. Measurements of risk. Calculation of security and Portfolio Risk and Return-Markowitz Model. Sharpe Single Index ModelSystematic Risk and Unsystematic Risk.
3	Taylor series and Bond Valuation. Calculation of Duration and Convexity of bonds. Insurance Fundamentals – Insurance defined. Meaning of loss. Chances of loss, Peril, Hazard, proximate cause in insurance. Costs and benefits of insurance to the society and branches of insurance-life insurance and various types of general insurance. Insurable loss exposures- feature of a loss that is ideal for insurance.
4	Life Insurance Mathematics – Construction of Morality Tables. Computation of Premium of Life Insurance for a fixed duration and for the whole life. Determination of claims for General Insurance – Using Poisson Distribution and Negative Binomial Distribution –the Polya Case. Determination of the amount of Claims of General Insurance – Compound Aggregate claim model and its properties, Claims of reinsurance. Calculation of a compound claim density function F, Recursive and approximate formulae for F.
Sugge 1. Ros 2. Elli 2018. 3. Dar 4. Hul	ested Readings: So, S. M. An Introduction to Mathematical Finance. Cambridge University Press, 2019. Nott, R. J. and Kopp, P. E. Mathematics of Financial Markets. Sprigner Verlag, New York Inc, modaran, A. Corporate Finance - Theory and Practice. John Wiley & Sons, Inc, 2012. 1, J. C. Options, Futures, and Other Derivatives. Prentice-Hall of India Private Ltd, 2010.

5. Daykin, C. D., Pentikainen, T. and Pesonen, M. Practical Risk Theory for Actuaries. Chapman & Hall, 2008.

6. Dorfman, M. S. Introduction to Risk Management and Insurance. Prentice Hall, Englwood Cliffs, New Jersey, 1999.

7. Neftci, S. N. An Introduction to the Mathematics of Financial Derivatives. Academic Press, Inc, 1991

Course	MATHDCEC0444&0445G		Course	Wavelet Analysis
code			Name	
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)			
Examination	3 Hours Pre-req		uisite of course	NIL
Course	The course aim is to introduce a flexible system which provide stable reconstruction and			
Objective	analysis of functions (signals) and the construction of variety of orthonormal bases b			riety of orthonormal bases by
	applying operators on a single wavelet function			
Course	After completing this course, student is expected to learn the following:			
Outcomes:	1: Understand the approximation of functions (signals) by frame theory.			
	2: Use the applications of frames in stable analysis and decompositions of functions.			
	3: Learn the applications of wavelets in the construction of orthonormal bases by			
	wavelets.			
	4: Analyse different types of transforms in term of operators.			

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit
1	Review of inner product spaces, orthonormal systems, frames in Cn, frames algorithms, frames and Bessel sequences in infinite dimensional Hilbert spaces, frame sequence, the Gram matrix
	associated with Bessel sequences.
2	Frames and operators, characterization of frames, dual frames, tight frames. Riesz bases, frames
	versus Riesz bases, conditions for a frame being a Riesz basis, frames containing a Riesz basis,
	perturbation of frames.
3	Wavelets, Haar wavelets, basic properties of the Haar scaling function, Haar decomposition and
	reconstruction algorithms, the Daubechies wavelets, wavelet bases, scaling function. multire
	solution analysis (MRA), construction of wavelets from MRA.
4	Windowed Fourier transform (WFT), continuous Fourier transform (CFT), continuous wavelet
	transform (CWT), comparison between CFT and CWT, continuous wavelet transform as an
	operator, inversion formula for continuous wavelet transform.
Sugge	sted Readings:
1. Bog	gess, A. and Narcowich, F.J. A First Course in Wavelets and Fourier Analysis. John Wiley &

amp; Sons, 2010.

2. Mallat, S. A Wavelet Tour of Signal Processing. Academic Press, 2009.

3. Han, D., Kornelson, K., Larson, D. and Weber, E. Frames for Undergraduates, Student Math. Lib., (AMS) Vol. 40, 2007.

4. Christensen, O. An Introduction to Frames and Riesz Bases. Birkhauser, 2003.

5. Harnendez, E. and Weiss, G. A First Course on Wavelets, CRC Press, 1996.

Course	MATHDCEC0444&04	445H	Course	Differential
code			Name	Geometry of
				Manifolds
Programme	M.A./M.Sc. Mathematics		Credits	5 (L-3, T-2, P-0)
Hrs/Weeks	5		Total Hours	60
Total Marks	100 (Class Int. Exam30 marks, Univ. Exam70 marks)			
Examination	3 Hours	Pre-requisite of course		NIL
Course	The objectives of this course are to study tensor and manifolds.			
Objective				
~				
Course	After completing this course, student is expected to learn the following:			
Outcomes:	1. Understand tensor and symbols used for tensor.			
	2. Understands the Riemannian metric.			
	3. Understands the Christoffels and Ricci tensor.			

NOTE: Eight questions will be set, two from each of the UNIT. The candidates are required to attempt any five questions in all selecting at least one question from each section. All questions carry equal marks. Unit I will be taught via online mode.

COURSE SYLLABUS

Units	Content of Each unit				
1	Transformation of coordinates, Tensors, Algebra of Tensors, Alternate tensor, Symmetric and				
	skewsymmetric Tensors, Reciprocal and Relative tensors, Contraction of tensors and quotient				
	law. Riemannian metric, Christoffel Symbols, Covariant derivatives, Intrinsic derivatives and				
	geodesics. Riemann-Christoffel curvature tensor and its symmetry properties. Bianchi identities				
	and Einstein tensor.				
2	Ricci tensor, Riemannian curvature tensor of first and second kind, Definition and examples of				
	differentiable manifolds. Tangent spaces, Immersions and imbedding of manifolds.				
3	Riemannian manifolds: Length of a curve in Riemannian manifold, Magnitude of a vector in Riemannian manifold, Angle between two vectors in Riemannian manifold, Parallelism of vectors, Geodesics, Riemannian Coordinate system, Recurrent Riemannian manifold, Riemannian curvature, Einstein space.				
4	Hypersurfaces: Generalised Gauss formulae, Normal curvature, Asymptotic line, Meunier's				
	theorem, Weingarten equations. Lines of curvature. Generalized Gauss and Mainardi-Codazzi				
	equations.				

Suggested Readings:

- 1. R.S. Mishra, A course in tensors with applications to RiemannianGeometry, Pothishala (Pvt.) Ltd., 1965.
- 2. R.S. Mishra, Structures on a differentiable manifold and theirapplications, Chandrarna Prakashan, Allahabad, 1984.
- 3. B.B. Sinha, An Introduction to Modern Differential Geometry, Kalyani Publishers, New Delhi, 1982.
- 4. K. Yano and M. Kon, Structure of Manifolds, World ScientificPublishing Co. Pvt. Ltd., 1984.

9. TEACHING-LEARNING PROCESS

• Lectures • Discussions • Simulations • Role Playing • Participative Learning • Interactive Sessions • Seminars • Research-based Learning/Dissertation or Project Work • Technology-embedded Learning

10. IMPLEMENTATION OF BLENDED

LEARNING Blended Learning is a pedagogical approach that combines face to-face classroom methods with computer-mediated activities in the process of teaching and learning. It implies nice blend of face-to-face and online activities to make the learning processes more interesting and engaging. It focuses on integration of traditional classroom activities and innovative ICT-enabled strategies. It emphasises student-centric learning environment where the teacher is the facilitator for productive and measurable learning outcomes. It optimises and compliments the face to face learning, giving ample freedom and flexibility to the students and teachers to access and explore the wide range of open-access sources such as video lectures, podcasts, recordings and articles through digital platforms. It gives freedom and autonomy to the teachers in selection of appropriate digital platforms, resources and time-slots to complement and

supplement face to face learning. The Blended Learning doesn't undermine the role of the teacher, rather it gives him/her an opportunity to explore the unexplored in accordance with the requirements of the curriculum.