Mahatma Jyotiba Phule Rohilkhand University, Bareilly

Proposed M.Sc. Botany Syllabus in accordance with New Education Policy 2020

महात्मा ज्योतिबा फुले रुहेलखण्ड विश्वविद्यालय, बरेली

Members of the Board of Studies

S. N.	Name	Designation	College/ University
1.	Dr. Alok Kumar Khare	Convener	Bareilly College, Bareilly
2.	Dr. Jolly Garg	Member	DAK College, Moradabad
3.	Dr. Mukesh Kumar	Member	GK University, Haridwar
4.	Dr. Anamika Tripathi	Member	Hindu College, Moradabad
5.	Dr. G. K. Sharma	Member	Hindu College, Moradabad
6.	Dr. P. B. Tiwari	Member	S. M. College, Chandausi
7.	Dr. H. S. Balyan	External Subject Expert	CCS University, Meerut
8.	Prof. Sandeep Kumar Malik	External Subject Expert	GBPU, Pantnagar
9.	Prof. G. S. Singh	Special Invitee	IESD, BHU, Varanasi
10.	Prof. Lal Ji Singh	Special Invitee	IGKV, Chhattisgarh
11.	Prof. Anil Dwivedi	Special Invitee	DDGU, Gorakhpur
12.	Prof. Vijay Malik	Special Invitee	CCSU, Meerut
13.	Prof. Shyam Pandey	Special Invitee	LU, Lucknow
14.	Prof. Shamsul Hayat	Invited Member	AMU, Aligarh
15.	Dr. Asha Rani	Invited Member	Bareilly College, Bareilly
16.	Dr. Mohd. Javed Ansari	Invited Member	Hindu College, Moradabad
17.	Dr. Neeraj Pal Malik	Invited Member	Bareilly College, Bareilly
18.	Dr. Shalini Saxena	Invited Member	Bareilly College, Bareilly
19.	Mr. Sanjay Singh	Invited Member	Bareilly College, Bareilly
20.	Dr. Gaurav Kumar	Invited Member	Bareilly College, Bareilly
21.	Mr. Ragib Husain	Invited Member	Bareilly College, Bareilly
22.	Mr. Vinay Kumar Singh	Invited Member	Bareilly College, Bareilly

Semester wise Titles of the Papers in M.Sc. Botany

Year	Semester	Course Code	Paper Title	Core Compulsory/ Elective/Value Added	Credits	Teaching Hours
		BOT- 701T	Diversity of Algae, Fungi Lichens and Bryophytes	Core Compulsory	04	60
		BOT-	Diversity of Pteridophytes,	Core		
		702T	Gymnosperms and Palaeobotany	Compulsory	04	60
		BOT-	Plant Systematics and	Core	0.4	(0
		703T	Reproductive Biology	Compulsory	04	60
	First	BOT- 704T	Any one of the following: A. Microbiology B. Economic and Ethnobotany	Core Elective	04	60
		BOT- 705P	Practical Lab 1	Core Compulsory	04	60
		BOT- RP01	Industrial Training/ Research Project/ Survey	Core Compulsory & Value Added	04	60
I		MO-01	Industrial Microbiology	Minor- Open for other faculty	04	60
	Second	BOT- 801T	Biomolecules and Cell biology	Core Compulsory	04	60
		BOT- 802T	Molecular Biology	Core Compulsory	04	60
		BOT- 803T	Genetics	Core Compulsory	04	60
		BOT- 804T	Any one of the following: A. Biostatistics B. Plant Anatomy	Core Elective	04	60
	O)	BOT- 805P	Practical Lab 2	Core Compulsory	04	60
		BOT- RP02	Industrial Training/ Research Project/ Survey	Core Compulsory & Value Added	04	60
		MO-02	Biofertilizers	Minor- Open for other faculty	04	60
		BOT- 901T	Plant Physiology	Core Compulsory	04	60
II	Third	BOT- 902T	Growth and Developmental Biology	Core Compulsory	04	60
		BOT- 903T	Ecology and Evolution	Core Compulsory	04	60
		ВОТ-	Any one of the following:	Core Elective	04	60

	904T	A. Plant Breeding and Intellectual Property Rights B. Environmental Issues and Policies			
	BOT- 905P	Practical Lab 3	Core Compulsory	04	60
	BOT- RP03	Industrial Training/ Research Project/ Survey	Core Compulsory & Value Added	04	60
	MO-03	Disaster Management	Minor- Open for other faculty	04	60
	BOT- 1001T	Analytical Techniques in Plant Science	Core Compulsory	04	60
	BOT- 1002T	Biotechnology and Plant Tissue Culture	Core Compulsory	04	60
	BOT- 1003T	Biophysical Chemistry and Bioenergetics	Core Compulsory	04	60
Fourth	BOT- 1004T	Any one of the following: A. Bioinformatics B. Plant Pathology	Core Elective	04	60
	BOT- 1005P	Practical Lab 4	Core Compulsory	04	60
	BOT- RP04	Industrial Training/ Research Project/ Survey	Core Compulsory & Value Added	04	60
	MO-04	Biodiversity and Conservation	Minor- Open for other faculty	04	60

SEMESTER: I

SEMESTER: I Course Code: BOT-701T Paper Title: Algae, Fungi, Lichens and Bryophytes

Unit	Syllabus	Teaching
		Hours
I	Introduction and general features of algae: Cell structure, thallus organization	20
	and reproduction of Cyanophyta, Xanthophyta, Bacillariophyta, Dinophyta,	
	Chlorophyta, Phaeophyta, Cryptophyta and Rhodophyta. Classification as	
	proposed by R. E. Lee (2008). Algal research in India. Algal culturing	
	techniques in the laboratory. Algal biofuels: algal biodiesel, bio-ethanol and	
	biohydrogen production. Algae in global warming: carbon capture by algae.	
	Algal blooms and Algal Biofertilizers. Algal bioremediation. Bioactive	
	compounds of algae.	
II	Introduction and general features of fungi: Myxomycota, Oomycota,	18
	Chytidriomycota, Zygomycota, Ascomycota, Basidiomycota and	

	Deuteromycota. Recent trends in the classification of Fungi. Fungal research in	
	India. Fungal culturing techniques in the laboratory. Heterothallism and	
	Parasexuality. Economic importance of Fungi.	
III	Lichen: Thallus structure, classification and reproduction. Collection and	06
	identification techniques. Lichen research in India. Economic importance of	
	lichens.	
IV	Introduction and general features of Bryophytes. Affinities with Algae and	16
	Pteridophytes. Recent classification of Bryophytes. Bryophyte research in	
	India. Comparative structural organization of gametophyte and sporophyte	
	among major groups: Marchantiophyta (Liverworts) Anthocerotophyta	
	(Hornworts), Bryophyta (Mosses). Bryophytes in relation to embryophyte	
	evolution.	

- 1. Bold, H.C. and Wynne, M. J. (1985). Introduction to the algae; Structure and reproduction. Prentice Hall, Englewood cliffs, New Jersey.
- 2. Cavers, F. (1976). The inter relationships of the bryophyte. S.R. Technic, Ashok Rajpath, Patna.
- 3. Chapman, V.J. and Chapman D.J. (1975). The algae. 2nd Edition, Mac. Millan Publ. Inc. New York.
- 4. Chopra, R. N., and Kumar, P. K. (1988). Biology of Bryophytes. John Wiley and Sons, New York (NY).
- 5. Desikachary, T.V. (1959). Cyanophyta. ICAR, New Delhi.
- 6. Hoek, C. van den, Mann, D. G. and Jahns, H. M. (1995). Algae: An introduction to Phycology. Cambridge University Press, UK.
- 7. Kashyap, S. R. (1929). Liverworts of the Western Himalayas and the Punjab Plain. Part1, Chronica Botanica, New Delhi.
- 8. Kashyap, S. R. (1932). Liverworts of the western Himalayas and the Panjab plain (illustrated). Part 2, The Chronica Botanica, New Delhi.
- 9. Puri, P. (1981). Bryophytes: Morphology, Growth and Differentiation. Atmaram and Sons, New Delhi.
- 10. Prescott, G. W. (1969). The algae: A review. Nelson, London.
- 11. Round, F.E. (1981). The Ecology of Algae. Cambridge University Press, Cambridge.

SEMESTER: I Course Code: BOT-702T Paper Title: Pteridophytes, Gymnosperms and Palaeobotany

Unit	Syllabus	Teaching
		Hours
I	Introduction and general features of Pteridophytes. Affinities with Bryophytes	18
	and Gymnosperms. Classification of Pteridophytes as proposed by Smith et al.	
	2006. Pteridophyte research in India. Comparative account of morphology,	
	anatomy and reproduction among important members of Psilotopsida,	
	Equisetopsida, Marattiopsida and Polypodiopsida. Development of leaf and	
	vascular system in Pteridophytes. Steps in seed evolution. Apogamy,	
	Apospory and Parthenogenesis in Pteridophytes.	
II	Introduction and general features of Gymnosperms. Affinities with	18
	Pteridophytes and Angiosperms. Classification as proposed by Sporne (1965).	
	Comparative account of Pteridospermales, Bennettitales, Pentoxylales,	
	Cycadales, Cordaitales, Coniferales, Taxales, Ginkgoales and Gnetales. Ovule	

	and seed development in Gymnosperms. Advance features and position of	
	Gnetales among Seed Plants. Economic importance of Gymnosperms.	
III	Introduction to fossils, types of fossilization and methods in study of fossils.	18
	Fossil record of Algae, Bryophyte, Pteridophytes, Gymnosperms and	
	Angiosperms. Palaeobotany researches in India. Recent trends in the study of	
	fossils. Geological Time Scale. Importance of fossils in studying evolution of	
	plants. Speciation in the fossil record, a case study on diatom Rhizosolenia.	
IV	Important and useful databases of Algae, Fungi, Bryophytes and	06
	Gymnosperms. Features and use of nuclear, mitochondrial and chloroplast	
	regions in classifying non-flowering plants. Origin of angiosperms.	

- 1. Agashe, S. N. (1995). Palaeobotany. Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi.
- 2. Arnold, A. C. (2005). An Introduction to Palaeobotany. Agrobios (India), Jodhpur.
- 3. Bhatnagar, S. P. and Moitra, A. (1996). Gymnosperms. New Age International, New Delhi.
- 4. Biswas, C. and Johri, B. M. (1997). Gymnosperms. Narosa Publishers, New Delhi.
- 5. Parihar, N.S. (1976). Biology and morphology of the Pteridophytes. Central Book Depot.
- 6. Rashid, A. (1999). An Introduction to Pteridophyta. Vikas Publishing House Pvt. Ltd., New Delhi.
- 7. Ramanujan, C.K.G. (1970). Indian Gymnosperms in time and space. Today &Tomorrow 's Printers & Publishers.
- 8. Sporne, K.R. (1965). Morphology of Gymnosperms. Hutchinson University Library.
- 9. Sporne, K.R. (1986). The morphology of Pteridophytes. Hutchinson University Press, London.

SEMESTER: I Course Code: BOT-703T Paper Title: Plant Systematics and Reproductive Biology

Unit	Syllabus	Teaching Hours
I	Need for scientific names, development of botanical code, contents of botanical code, Ranks and endings provided by the ICN, Typification (Holotype, Isotype, Paratype, Syntype, Lectotype, Neotype), Author citation, Publication of Names, Principle of Priority, PhyloCode. Outline of classification of Angiosperms as proposed by Bentham and Hooker. APG classification system: Basal living angiosperm, Monocots and Eudicots. Phylogenetic relationships of major angiosperm clades.	20
II	Special features of important families: Monocots (Commelinaceae, Cyperaceae, Poaceae, Orchidaceae), Eudicots (Magnoliaceae, Ranunculaceae, Papaveraceae, Brassicaceae, Malvaceae, Oxalidaceae, Rutaceae, Fabaceae, Rosaceae, Lythraceae, Cucurbitaceae, Apiaceae, Rubiaceae, Asteraceae, Apocynaceae, Convolvulaceae, Solanaceae, Acanthaceae, Scrophulariaceae, Lamiaceae, Amaranthaceae, Euphorbiaceae, Cannabaceae, Moraceae).	15
III	Herbarium preparation and use, Virtual Herbarium, Roles of a Botanical Garden, Floras, Journals, Taxonomic Keys, DNA Barcoding. Chemotaxonomy, Embryology and Palynology Sieve-tube plastids in relation to taxonomy. Possible ancestors of Angiosperms.	10
IV	Stamen and Carpel evolution. Microsporogenesis and Megasporogenesis. Embryo sac and its types. Pollination and Fertilization. Embryo and Endosperm development. Placentation and its types. Types of fruits. Seed germination. Dormancy.	15

- 1. Singh, G. (2012). Plant Systematics: Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition. 29
- 2. Jeffrey, C. (1982). An Introduction to Plant Taxonomy. Cambridge University Press, Cambridge.
- 3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.
- 4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi. 5. Radford, A.E. (1986). Fundamentals of Plant Systematics. Harper and Row, New York
- 5. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition.
- 6. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 7. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 8. Johri, B.M. (1984). Embryology of Angiosperms, Springer-Verlag, Netherlands.

SEMESTER: I Course Code: BOT-704T-A Paper Title: Microbiology

Unit	Syllabus	Teaching
	•	Hours
I	Introduction and general characteristics of Viruses, Classification of plant	20
	viruses. Isolation, purification and characterization of viruses. Replication,	
	transmission of viruses, economic importance, symptomatology of plant	
	viruses. Virus-induced cell transformation, virus-induced cancer.	
	Cyanobacteria, Viroids, Prions. Archaebacteria and Eubacteria: General	
	account, ultrastructure, nutrition and reproduction, economic importance.	
	Plasmids and their characteristics. 16s r-DNA sequencing.	
II	Agricultural Microbiology: Agriculturally important microorganisms,	10
	Biological nitrogen fixation, Mycorrhizae, Plant diseases and their biocontrol.	
	Plant growth promoting rhizobacteria (PGPR). Weed and Pest Biocontrol.	
III	Environmental Microbiology: Microbes and quality of environment. Microbial	15
	degradation of pesticides and hydrocarbons. Biodegradation of the	
	agricultural residues. Bioremediation of contaminated soils and water.	
	Microbes in nanotechnology. Biosensors, Biogas Production.	
IV	Food and Industrial Microbiology: Fermentation, fermenter design and	15
	growth processes. Food spoilage. Microbes in recovery of metal (bioleaching)	
	and oil. Cell and enzyme immobilization. Microbial enzymes of industrial	
	interest. Single Cell Protein. Vaccines.	

- 1. Pelezar, M.I. and Reid, R.D. (1993). Microbiology McGraw Hill Book Company, New York, 5th Edition.
- 2. Atlas, M. Ronald (1995). Principles of Microbiology, 1st Edition, Mosby-Year Book, Inc, Missouri, U.S.A.
- 3. Block, J.G. (1999). Microbiology Principles and Explorations, 4th Edition John Wiley and Sons Inc.
- 4. Frazier, W.C. (1988). Food Microbiology, McGraw Hill Inc. 4th Edition.
- 5. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition

SEMESTER: I Course Code: BOT-704T-B

Paper Title: Economic and Ethnobotany

Unit	Syllabus	Teaching Hours
I	Cereals: Wheat Rice and millets. Legumes: General account, importance to man and ecosystem. Sugars & Starches: Morphology and processing of sugarcane, products and by-products of sugarcane industry. Potato – morphology, propagation & uses. Spices: Listing of important spices, their family and part used, economic importance with special reference to fennel, saffron, clove and black pepper.	20
II	Beverages: Tea, Coffee (morphology, processing & uses). Oils & Fats: General description, classification, extraction, their uses and health implications groundnut, coconut, linseed and Brassica and Coconut (Botanical name, family & uses) Essential Oils: General account, extraction methods, comparison with fatty oils & their uses.	10
III	Natural Rubber: Para-rubber: tapping, processing and uses. Drug-yielding plants: Therapeutic and habit-forming drugs with special reference to Cinchona, Digitalis, Papaver and Cannabis. Timber plants: General account with special reference to teak and pine. Fibers: Classification based on the origin of fibers, Cotton and Jute (morphology, extraction and uses).	10
IV	Ethnobotany: Plants used by the tribals (Food plants, intoxicants and beverages, Resins and oils and miscellaneous uses. Significance of the following plants in ethno botanical practices: Azadiractha indica, Ocimum sanctum, Vitex negundo, Gloriosa superba, Tribulus terrestris, Pongamia pinnata, Cassia auriculata, Indigofera tinctoria. Role of ethnobotany in modern medicine with special example: Rauvolfia sepentina, Trichopus zeylanicus, Artemisia, Withania.	20

- 1. Kochhar, S.L. (2012). Economic Botany in Tropics, MacMillan & Co. New Delhi, India.
- 2. Wickens, G.E. (2001). Economic Botany: Principles & Practices. Kluwer Academic Publishers, Netherlands.
- 3. Chrispeels, M.J. and Sadava, D.E. (2003). Plants, Genes and Agriculture. Jones & Bartlett Publishers.
- 4. S.K. Jain, Manual of Ethnobotany, Scientific Publishers, Jodhpur, 1995.
- 5. S.K. Jain (ed.) Glimpses of Indian. Ethnobotany, Oxford and I B H, New Delhi 1981
- 6. Lone, F. A., Khan, M., & Buth, G. M. (2020). Palaeoethnobotany: plants and ancient man in Kashmir. CRC Press.
- 7. S.K. Jain (ed.) (1989). Methods and approaches in ethnobotany. Society of ethnobotanists, Lucknow, India.
- 8. S.K. Jain, (1990). Contributions of Indian ethnobotany. Scientific publishers, Jodhpur.
- 9. Colton C.M. (1997). Ethnobotany Principles and applications. John Wiley and sons.

SEMESTER: I Course Code: BOT-705P Paper Title: Practical Lab 1

Practical will be based on all the courses of Semester I.

SEMESTER: I Course Code: MO-01 Paper Title: Industrial Microbiology

Unit	Syllabus	Teaching Hours
I	Exploitation of microorganisms and their products, screening, strain development strategies, immobilization methods, fermentation media, raw material used in media production, antifoaming agents, buffers, downstream processing.	15
II	Fermentation equipment and its uses, fermenter design, Types of fermenters and fermentations- single, batch, continuous, multiple, surface, submerged and solid state.	15
III	Industrial products from microorganisms- antibiotics: production of penicillin, streptomycin. Interferons, vaccines, hormones, vitamins.	15
IV	Enzymes from microbes: amylase, protease. Organic acids: citric acid, acetic acid, amino acids: glutamic acid, lysine. Production of alcoholic beverages: bear and wine, biofuels: ethanol, methane, biogas.	15

Suggested Readings:

- 1. Pelzar, M.J. Jr., Chen E.C. S., Krieg, N.R. (2010). Microbiology: An application based approach. Tata McGraw Hill Education Pvt. Ltd., Delhi.
- 2. Tortora, G.J., Funke, B.R., Case. C.L. (2007). Microbiology. Pearson Benjamin Cummings, San Francisco, U.S.A. 9th edition.
- 3. Frazier, W.C. (1988) Food Microbiology, McGraw Hill Inc. 4th Edition.
- 4. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition

SEMESTER: II

SEMESTER: II Course Code: BOT-801T Paper Title: Biomolecules and Cell Biology

Unit	Syllabus	Teaching Hours
I	Carbohydrate, Lipids and Amino acid: Classification, Structure and properties of some important carbohydrates, lipids and amino acid and their significance	15
	to plants.	
II	Protein structure and Enzymes: Hierarchical structure of proteins; folding; degradation; Application of principles of thermodynamics in biology; Enzyme classification, Physiochemical nature, enzyme kinetics and regulation of enzymatic activity. Brief overview of various signal transduction pathways.	15

		4 =
III	Structure and function of Plant Cell Wall and Cell Membrane; Nucleosome	15
	and Chromosomal Packaging Structure of nuclear Envelope, Nuclear pore	
	complex. Cell division and cell cycle (Mitosis and meiosis, their regulation,	
	steps in cell cycle, regulation and control of cell cycle.	
IV	Protein sorting: Organelle biogenesis and protein secretion, synthesis and	15
	targeting, of mitochondria, chloroplast, peroxisomal proteins, translational	
	modification in the ER. Intracellular traffic, vesicular traffic in the secretary	
	pathway, protein sorting in the Golgi, traffic in the endocytic pathway,	
	exocytosis. Trafficking between nucleus and cytoplasm: Protein and RNA	
	transport.	

- 1. Campbell, M.K. (2012). Biochemistry, 7th ed., Published by Cengage Learning.
- 2. Campbell, P.N. and Smith, A.D. (2011). Biochemistry Illustrated, 4th ed., Published by Churchill Livingstone.
- 3. Tymoczko, J.L., Berg, J.M. and Stryer, L. (2012). Biochemistry: A short course, 2nd ed., W. H. Freeman.
- 4. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2011). Biochemistry, W.H. Freeman and Company.
- 5. Nelson, D.L. and Cox M.M. (2008). Lehninger Principles of Biochemistry, 5th Edition., W.H. Freeman and Company.
- 6. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.
- 7. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc. U.S.A. 8th edition.
- 8. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.
- 9. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009 The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco

SEMESTER: II Course Code: BOT-802T Paper Title: Molecular Biology

Unit	Syllabus	Teaching Hours
I	DNA replication, repair and recombination (Unit of replication, enzymes	15
	involved, replication origin and replication fork, fidelity of replication,	
	extrachromosomal replicons, DNA damage and repair mechanisms,	
	homologous and site-specific recombination).	
II	RNA synthesis and processing (transcription factors and machinery, formation of initiation complex, transcription activator and repressor, RNA polymerases,	15
	capping, elongation, and termination, RNA processing, RNA editing, splicing,	
	and polyadenylation, structure and function of different types of RNA, RNA transport).	
III	Protein synthesis and processing (Ribosome, formation of initiation complex, initiation factors and their regulation, elongation and elongation factors, termination, genetic code, aminoacylation of tRNA, tRNA-identity, aminoacyl tRNA synthesise, and translational proof-reading, translational inhibitors, Post- translational modification of proteins).	15
IV	Control of gene expression at transcription and translation level (regulating the expression of phages, viruses, prokaryotic and eukaryotic genes, role of	15
	chromatin in gene expression and gene silencing).	

- 1. Watson J.D., Baker, T.A., Bell, S.P., Gann, A., Levine, M., Losick, R. (2007). Molecular Biology of the Gene, Pearson Benjamin Cummings, CSHL Press, New York, U.S.A. 6th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. Benjamin Cummings. U.S.A. 9th edition.
- 4. Russell, P. J. (2010). Genetics- A Molecular Approach. Benjamin Cummings, U.S.A. 3rd edition.
- 5. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.

SEMESTER: II Course Code: BOT-803T Paper Title: Genetics

Unit	Syllabus	Teaching Hours
I	Mendelian genetics and its extensions: Codominance, incomplete dominance,	15
	gene interactions, pleiotropy, phenocopy, linkage and crossing over, sex	
	linkage, sex limited and sex influenced characters. Quantitative inheritance:	
	Concept of gene effects (additive, dominance, over-dominance and epistasis); polygenes and quantitative trait loci (QTL).	
II	Mutations and mutagenic agents: Types, causes and detection, mutant types -	15
	lethal, conditional, biochemical, loss of function, gain of function, germinal	
	verses somatic mutants, insertional mutagenesis. Structural and numerical	
	alterations of chromosomes: Deletion, duplication, inversion, translocation,	
	ploidy and their genetic implications. Practical application of mutation in crop	
	improvement.	
III	Microbial genetics: Methods of genetic transfers - transformation, conjugation,	15
	transduction and sexduction, mapping genes by interrupted mating, fine	
	structure analysis of genes.	
IV	Extrachromosomal inheritance: Criteria for extra chromosomal inheritance;	15
	plastid inheritance in Mirabilis, iojap in corn, Kappa particles in Paramecium,	
	coiling in snails, brief idea of mitochondrial (male sterility in plants) and	
	chloroplast genetics, paternal inheritance.	

- 1. Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, John Wiley & sons, India. 8th edition.
- 2. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics, John Wiley & Sons Inc., India. 5th edition.
- 3. Klug, W.S., Cummings, M.R., Spencer, C.A. (2012). Concepts of Genetics. Benjamin Cummings, U.S.A. 10th edition.
- 4. Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2010). Introduction to Genetic Analysis. W. H. Freeman and Co., U.S.A. 10th edition.

SEMESTER: II Course Code: BOT-804T-A Paper Title: Biostatistics

Unit	Syllabus	Teaching
		Hours
I	Introduction of Biostatistics. Collection and Classification of data: Sampling	15
	and types of sampling methods. Presentation of Data: Tabular, Graphical, Line	
	Diagrams, Frequency Polygon, Frequency Curve, Scatter or Dot Diagram, Bar	
	Diagrams, Pie Chart. Measures of central tendency - Mean, median, mode.	
	Measures of dispersion: Range, standard error, standard deviation, co-efficient	
	of variations.	
II	Probability: Sum rule, Product rule and Binomial expansion. Probability	15
	distribution: Normal, Binomial and Poisson. Kurtosis. Correlation and	
	Regression: Types of correlation (linear, non-linear, positive and negative),	
	difference between correlation and regression.	
III	Analysis of variance (ANOVA): Summary of steps involved in ANOVA. Test	15
	of hypothesis and tests of significance: Student's t-Test, Chi-square test, F-test.	
	Introduction to life table. Parametric and Non-parametric test.	
IV	Experimental Designs: Introduction, Observational Investigation, Steps in	15
	Methodology and Designing, Guidelines on Methodology, Experimental	
	Investigation, Use of Computers.	

Suggested Readings:

- 1. Danniel, W.W., (1987). Biostatistics. New York, John Wiley Sons.
- 2. Sundarrao, P.S.S and Richards, J. (2012). An introduction to Biostatistics, 5th edition.
- 3. Selvin, S., (1991). Statistical Analysis of epidemiological data, New York University Press.
- 4. Bishop, O.N. (1966). The Principles of Modern Biology: Statistics for Biology. Houghton Mifflin Company, Boston.
- 5. Freedman, P. (2017). The Principles of scientific research. New York, Pergamon Press.
- 6. Campbell, R.C. (1998). Statistics for Biologists. Cambridge University Press.

SEMESTER: II Course Code: BOT-804T-B Paper Title: Plant Anatomy

Unit	Syllabus	Teaching
		Hours
I	Plant Tissues: Classification; Simple and complex tissues; cytodifferentiation	10
	of tracheary elements and sieve elements; Pits and plasmodesmata; Wall	
	ingrowths and transfer cells, adcrustation and incrustation, Ergastic	
	substances.	
II	Stem: Organization of shoot apex (Apical cell theory, Histogen theory, Tunica	20
	Corpus theory, continuing meristematic residue, cytohistological zonation);	
	Types of vascular bundles; Structure of dicot and monocot stem. Leaf:	
	Structure of dicot and monocot leaf, Kranz anatomy. Root: Organization of	
	root apex (Apical cell theory, Histogen theory, Korper-Kappe theory);	
	Quiescent center; Root cap; Structure of dicot and monocot root; Endodermis,	
	exodermis and origin of lateral root.	
III	Vascular Cambium: Structure, function and seasonal activity of cambium;	20

	Secondary growth in root and stem. Wood: Axially and radially oriented elements; Types of rays and axial parenchyma; Cyclic aspects and reaction wood; Sapwood and heartwood; Ring and diffuse porous wood; Early and late wood, tyloses; dendrochronology. Periderm: Development and	
	composition of periderm, rhytidome and lenticels.	
IV	Adaptive and Protective Systems: Epidermal tissue system, cuticle,	10
	epicuticular waxes, trichomes (uni-and multicellular, glandular and	
	nonglandular, two examples of each), stomata (classification); Adcrustation	
	and incrustation; Anatomical adaptations of xerophytes and hydrophytes.	
	Secretory System: Hydathodes, cavities, lithocysts and laticifers.	

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 4. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.

SEMESTER: II Course Code: BOT-805P Paper Title: Practical Lab 2

Practical will be based on all the courses of Semester II.

SEMESTER: II Course Code: MO-02 Paper Title: Biofertilizers

Unit	Syllabus	Teaching Hours
I	General account about the microbes and plants used as biofertilizer: <i>Rhizobium</i> (isolation, identification, mass multiplication, carrier based inoculants, Actinorrhizal symbiosis).	18
II	<i>Azospirillum</i> : isolation and mass multiplication – carrier based inoculant, associative effect of different microorganisms. <i>Azotobacter</i> : classification, characteristics – crop response to <i>Azotobacter</i> inoculum, maintenance and mass multiplication.	18
III	Cyanobacteria (blue green algae), <i>Azolla</i> and <i>Anabaena azollae</i> association, nitrogen fixation, factors affecting growth, blue green algae and Azolla in rice cultivation. Mycorrhizal association, types of mycorrhizal association, taxonomy, occurrence and distribution, phosphorus nutrition, growth and yield – colonization of VAM – isolation and inoculum production of VAM, and its influence on growth and yield of crop plants.	18
IV	Organic farming – Green manuring and organic fertilizers, Recycling of biodegradable municipal, agricultural and Industrial wastes – biocompost making methods, types and method of vermicomposting – field Application.	06

- 1. Dubey, R.C., (2005). A Text book of Biotechnology S. Chand & Co, New Delhi.
- 2. Kumaresan, V. (2005). Biotechnology, Saras Publications, New Delhi.

- 3. John Jothi Prakash, E. (2004). Outlines of Plant Biotechnology. Emkay -Publication, New Delhi.
- 4. Sathe, T.V. (2004). Vermiculture and Organic Farming. Daya publishers.
- 5. Subha Rao, N.S. (2000). Soil Microbiology, Oxford & IBH Publishers, New Delhi.
- 6. Vayas, S.C., Vayas, S. and Modi, H.A. (1998). Bio-fertilizers and organic Farming. Akta Prakashan, Nadiad.

SEMESTER: III

SEMESTER: III
Course Code: BOT-901T
Paper Title: Plant Physiology

Unit	Syllabus	Teaching
		Hours
I	Photosynthesis - Light harvesting complexes; mechanisms of electron	20
	transport; photoprotective mechanisms; CO2 fixation-C3, C4 and CAM	
	pathways. Respiration and photorespiration - Citric acid cycle; plant	
	mitochondrial electron transport and ATP synthesis; alternate oxidase;	
	photorespiratory pathway. Nitrogen metabolism - Nitrate and ammonium	
	assimilation; amino acid biosynthesis.	
II	Sensory photobiology - Structure, function and mechanisms of action of	10
	phytochromes, cryptochromes and phototropins; stomatal movement;	
	photoperiodism and biological clocks.	
III	Water, solute transport and photoassimilate translocation – uptake, transport	15
	and translocation of water, ions, solutes and macromolecules from soil,	
	through cells, across membranes, through xylem and phloem; transpiration;	
	mechanisms of loading and unloading of photoassimilates.	
IV	Secondary metabolites - Biosynthesis of terpenes, phenols and nitrogenous	15
	compounds and their roles. Stress physiology - Responses of plants to biotic	
	(pathogen and insects) and abiotic (water, temperature and salt) stresses.	

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.
- 3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual. Narosa Publishing House, New Delhi.

SEMESTER: III Course Code: BOT-902T

Paper Title: Growth and Developmental Biology

Unit	Syllabus	Teaching
		Hours
I	Plant hormones - Biosynthesis, storage, breakdown and transport;	20
	physiological effects and mechanisms of action. Morphogenesis and	
	organogenesis in plants: Organization of shoot and root apical meristem;	
	shoot and root development.	
II	Development of flower: Transition to flowering - vegetative to reproductive	12
	evocation, floral homeotic mutations in Arabidopsis, Antirrhinum and	
	Petunia, axis development in flower, gender expression in monoecious and	
	dioecious plants. Control of floral identity (ABC Model).	
III	Developmental biology of male and female gametophytes: Regulation of anther	18
	and ovule development, microsporogenesis and microgametogenesis,	
	megasporogenesis and megagametogenesis, male sterility- mechanisms and	
	applications, pollen embryogenesis. Pollen-pistil interaction: In vivo and in	
	vitro pollen germination, pollen tube growth and guidance, double	
	fertilization, self-compatibility mechanisms.	
IV	Embryogenesis, seed and fruit development: Polarity during embryogenesis,	10
	pattern mutants, in vitro fertilization, endosperm development, apomixis,	
	polyembryony, somatic embryogenesis. Developmental mechanisms and	
	applications.	

Suggested Readings:

- 1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.
- 2. Taiz, L., Zeiger, E., MØller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition
- 3. Bob B. Buchanan (2015). Biochemistry and Molecular Biology of Plants.

SEMESTER: III Course Code: BOT-903T Paper Title: Ecology and Evolution

Unit	Syllabus	Teaching Hours
I	The Environment: Abiotic and biotic environment	15
	Habitat and Niche: Concept of habitat and niche; niche width and overlap;	
	fundamental and realized niche; resource partitioning; character displacement.	
	Population Ecology: Characteristics of a population; population growth	
	curves; population regulation; life history strategies (r and K selection)	
II	Species Interactions: Types of interactions, interspecific competition,	15
	herbivory, carnivory, pollination, symbiosis. Community Ecology: Nature of	
	communities; community structure and attributes; levels of species diversity	
	and its measurement; edges and ecotones. Ecological Succession: Types;	
	mechanisms; changes involved in succession; concept of climax.	
III	Ecosystem Ecology: Ecosystem structure; ecosystem function; energy flow and	15
	mineral cycling (C, N, P); primary production and decomposition; structure	

	and function of some Indian ecosystems: terrestrial (forest, grassland) and aquatic (fresh water, marine, estuarine). Biogeography: Major terrestrial	
	biomes; concept of endemism, botanical zones of India.	
IV	Population Genetics: Gene and Allele frequency, hardy Weinberg law, Forces	15
	of evolution: Genetic drift - Sampling error; Mutation. Migration/Gene Flow.	
	Speciation: Reproductive isolation. Species concepts and processes of	
	speciation. Drivers of speciation. allopathy and sympatry, Adaptive Radiation.	
	Geological time scale.	

- 1. Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5th edition.
- 2. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya Publications, New Delhi, India.
- 3. Ambast, R.S. & Ambast N.K. (2022). A Textbook of Plant Ecology. CBS Publisher & Distributors Pvt Ltd. 1t6th Ed.
- 4. Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.
- 5. Pratima Kapur and S. R. Govil (2004). Experimental Plant Ecology. CBS Publishers & Distributors Pvt Ltd, India
- 6. Govil S. R. & Tripathi, B. D. (2001). Water Pollution: An Experimental Approach. CBS Publishers & Distributors Pvt Ltd, India
- 7. Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press. U.S.A.
- 8. Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.
- 9. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition

SEMESTER: III Course Code: BOT-904T-A Paper Title: Plant Breeding and Intellectual Property Right

Unit	Syllabus	Teaching Hours
I	Plant breeding and crop improvement: Objectives and scope of plant breeding, hybridization in self- and cross-pollinated crops, genetic basis of	15
	inbreeding depression and heterosis, breeding for disease and insect resistance, transgenes and transgenic plants.	
II	Alien gene transfer through chromosome: Transfer of gene through individual chromosome characterization and utility of alien addition and substitution lines. Physical and genetic mapping using molecular markers. Crop varieties: Identification, release and notification of crop varieties, institutions involved	15
	in release of varieties.	
III	IPR in India and world (WTO (TRIPS, WIPO). Patents: Objectives, Rights, Patent Act 1970 and its amendments. Procedure of obtaining patents, Infringement. Copyrights: Introduction, Works protected under copyright law, Rights, Infringement. Trademarks: Objectives, Types, Rights, Protection of goodwill, Infringement.	15
IV	Geographical Indications: Objectives, Justification, International Position, Multilateral Treaties, National Level, Indian Position. Protection of Plant Varieties: Plant Varieties Protection-Objectives, Justification, International Position, Plant varieties protection in India. Rights of farmers, Breeders and	15

Researchers. National gene bank, Benefit sharing. Protection of Plant Varieties	
and Farmers' Rights Act, 2001. Biotechnology and Intellectual Property Rights.	İ

- 1. Allard, R.W. (1960). Principles of Plant Breeding. John Wiley, New York
- 2. Chopra, V.L. (2000). Plant Breeding: Theory and Practice 2nd Ed. Oxford & IBH, New Delhi.
- 3. Frey, K. J. (1966). Plant Breeding. The Iowa State University Press, Ames.
- 4. Frey, K. J. (1982). Plant Breeding II. Kalyani Publishers, New Delhi.
- 5. Welsh, J. R. (1981). Fundamentals of Plant Genetics and Breeding. John Wiley and Sons, New York.
- 6. Singh B. D. (2007). Plant Breeding. Kalyani Publishers. Ludhiana.
- 7. Nithyananda, K V. (2019). Intellectual Property Rights: Protection and Management. India, IN: Cengage Learning India Private Limited.
- 8. Neeraj, P., & Khusdeep, D. (2014). Intellectual Property Rights. India, IN: PHI learning Private Limited.
- 9. Ahuja, V K. (2017). Law relating to Intellectual Property Rights. India, IN: Lexis Nexis.

SEMESTER: III Course Code: BOT-904T-B Paper Title: Environmental Issues and Policies

Unit	Syllabus	Teaching
	·	Hours
I	Environmental Pollution: Causes and effects of air, water, soil, noise,	15
	radioactive pollution; Basic pollution abatement practices and technologies.	
	Global Change: Global land cover and land use change; Multiple impacts of	
	land use change; Causes, effects and mitigation strategies for global climate	
	change and stratospheric ozone loss.	
II	Biotic Invasions: Extent and mechanisms of biological invasions; Ecological	15
	and economic impacts; Management strategies. Loss of Biodiversity: Threats	
	and pattern of biodiversity loss; Natural and anthropogenic causes; IUCN	
	threat categories, Red data books; Conservation and restoration of	
	biodiversity, Biodiversity act.	
III	Global Water Crisis: Distribution, withdrawal and consumption patterns;	15
	Causes and effects of water crisis; Water conservation approaches. Global	
	Energy Crisis: Sources of energy supply; Current potential and future	
	prospects of energy sources; Energy crisis; Energy conservation strategies.	
IV	Challenges of Urbanization: Trends of urbanization; Environmental impact of	15
	urbanization; Concept of green cities. National Policies on Environment:	
	National Forest Policy; National Water Policy; National Energy Policy;	
	National Action Plan on Climate Change; National Biodiversity Action Plan.	

- 1. George Tchobanoglous, Frank Burton QC, Metcalf and Eddy Inc. (1991). Wastewater Engineering: Treatment, Disposal and Reuse. Tata McGraw Hill, New Delhi.
- 2. A. K. De, (1990). Environmental Chemistry, Wiley Eastern Ltd., New Delhi.
- 3. Dennis Allsopp, Kenneth Seal, Christine. C. Gaylarde, (1986). Introduction to Biodeterioration. Hodder Arnold H&S.
- 4. Baaker, K.H. and Herson, D.S., (1994). Bioremediation, McGraw-Hill Inc., New York.

- 5. Nuzhat Ahmed, Fouad M. Qureshi and Obaid Y. Khan, (2006). Industrial and Environmental Biotechnology, Horizon Press.
- 6. Paul. A, Rochelle, (2001). Environmental Molecular Biology, Horizon Press.
- 7. Jadhav H.V. and Bhosale, V.M. (2006). Himalaya Environmental Protection and Laws, Himalaya Publishing House.

SEMESTER: III Course Code: BOT-905P Paper Title: Practical Lab 3

Practical will be based on all the courses of Semester III.

SEMESTER: III Course Code: MO-03 Paper Title: Disaster Management

Unit	Syllabus	Teaching Hours	
I	Introduction to Disasters Concepts, and definitions of Disaster, Hazard,	15	
	Vulnerability, Resilience, Risks. Disasters: Classification, natural hazards and		
	Man-made disasters, Causes, Impacts (including social, economic, political,		
	environmental, health, psychosocial, etc.) Global trends in disasters, urban		
	disasters and climatic change.		
II	Approaches to Disaster Risk reduction Disaster management cycle-Phases,	15	
	Culture of safety prevention, mitigation and preparedness community based		
	DRR, Role of NDMA, NDRE, NIDM, STATE DM in disaster Management.		
III	Disasters and Development: Impact of Development projects such as doms,		
	embankments changes in Land-use etc., Climate Change Relevance of		
	indigenous knowledge and local resources.		
IV	Disaster Risk Management in India Hazard and Vulnerability profile of India,		
	Components of Disaster Relief Water, Food. Sanitation, Shelter, Health, Waste		
	Management Institutional arrangements (Mitigation, Response and		
	Preparedness, DM Act and Policy).		

- 1. David, A. (2000). Introduction in Confronting Catastrophe. Oxford University Press.
- 2. Andharia, J. (2008). Vulnerability in Disaster Discourse. JTCDM, Tata Institute of Social Sciences.
- 3. Blaikie, P., Cannon, T., Davis, I., Wisner, B. (1997). At Risk Natural Hazards, Peoples Vulnerability and Disasters, Routledge.
- 4. Damon, C. P. (2007). Introduction to International Disaster Management.
- 5. Nick, C. (1991). Disaster Management: A Disaster Manager's Handbook. Asian Development Bank, Manila Philippines.

SEMESTER: IV

SEMESTER: IV Course Code: BOT-1001T Paper Title: Analytical Techniques in Plant Science

Unit	Syllabus	Teaching
		Hours
I	Imaging and related techniques: Principles of microscopy; Light microscopy;	15
	Fluorescence microscopy; Confocal microscopy; Use of fluorochromes: (a)	
	Flow cytometry (FACS); (b) Applications of fluorescence microscopy:	
	Chromosome banding, FISH, chromosome painting; Transmission and	
	Scanning electron microscopy - sample preparation for electron microscopy,	
	cryofixation, negative staining, shadow casting, freeze fracture, freeze etching.	
II	Cell fractionation: Centrifugation: Differential and density gradient	15
	centrifugation, sucrose density gradient, CsCl2gradient, analytical	
	centrifugation, ultracentrifugation, marker enzymes. Radioisotopes: Use in	
	biological research, auto-radiography, pulse chase experiment.	
III	Spectrophotometry: Principle and its application in biological research.	15
	Chromatography: Principle; Paper chromatography; Column	
	chromatography, TLC, GLC, HPLC, Ion-exchange chromatography; Molecular	
	sieve chromatography; Affinity chromatography. PCR and its Types.	
IV	Mass spectrometry; X-ray diffraction; X-ray crystallography; Characterization	15
	of proteins and nucleic acids; Electrophoresis: AGE, PAGE, SDS-PAGE. RNA	
	Interference, Antisense RNA Technology, miRNA and Gene silencing.	

Suggested Readings:

- 1. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co. Ltd. New Delhi. 3rd edition.
- 2. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.
- 3. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.
- 4. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication. U.S.A. 4th edition

SEMESTER: IV Course Code: BOT-1002T Paper Title: Biotechnology and Plant Tissue Culture

Unit	Syllabus	Teaching Hours
I	Recombinant DNA technology, basic concept in genetic engineering, tool and techniques of recombinant DNA technology. Enzymes in genetic engineering. Restriction enzymes, DNA ligase, Polymerase, exonucleases, endonucleases, restriction endonucleases, S I nucleases, DNA ligases, reverse transcriptase and alkaline phosphatase. etc. Cloning vehicles: Plasmids, Cosmids, Lambda phage, Charon phage, shuttle vectors, 2µ DNA plasmids, yeast plasmids, M13 vector. Transposons, Primary vectors and plasmids - expression vectors.	

II	Selection of genes, Gene libraries, Genomic and cDNA library - Gene transfer	15
	methods, Genetic organization of Ti plasmids, Ti plasmid mediated transfer -	
	Agrobacterium tumefaciens, DNA mediated transfer. Calcium phosphate, PEG,	
	DEAE, via liposomes - Microinjection - Macroinjection, microprojectile, and	
	electroporation, - Selection of clones, marker and reporter genes in screening	
	methods. Hybridizations - colony, Southern, Northern, Western Blotting.	
	Elementary Knowledge of next generation sequencing.	
III	Introduction to Plant Tissue culture, Terms and definitions, Tools and	15
	techniques of plant tissue culture. Culture media, culture media preparation	
	and sterilization, callus and suspension cultures. Organ Culture and	
	Protoplast culture. Protoplast-Isolation regeneration and Viability test,	
	Somatic hybridization and methods of protoplast fusion- chemical.	
	Techniques and applications of somatic embryogenesis and regeneration of	
	plants, anther, pollen, ovule, endosperm, hairy root cultures.	
IV	Cell/callus line selection for resistance to herbicide, stress and diseases. Role	15
	of tissue culture in rapid clonal propagation, production of pathogen - free	
	plants and synthetic seeds. Plant transformation: Methods of gene transfer in	
	plants. Agrobacterium and CaMV mediated gene transfer; direct gene transfer	
	using PEG, micro injection, electroporation, microprojectile (biolistics)	
	method, liposome mediated DNA delivery. Transgenic plants for crop	
	improvement: Maize, Rice, Wheat, Cotton, Brinjal and Tomato.	
	,	

- 1. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science. Amsterdam. The Netherlands.
- 2. Glick, B.R., Pasternak, J.J. (2003). Molecular Biotechnology- Principles and Applications of recombinant DNA. ASM Press, Washington.
- 3. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms. Vikas Publication House Pvt. Ltd., New Delhi. 5th edition.
- 4. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons, U.K. 5th edition.
- 5. Stewart, C.N. Jr. (2008). Plant Biotechnology & Genetics: Principles, Techniques and Applications. John Wiley & Sons Inc. U.S.A.

SEMESTER: IV Course Code: BOT-1003T Paper Title: Biophysical Chemistry and Bioenergetics

Unit	Syllabus	Teaching
		Hours
I	Solution: Normality, molarity and molality of the solution, ppm and percent	10
	solutions, colligative properties of electrolyte solution: the Donnan effect.	
II	Acid and Bases: Definition of acid and base, acid-base properties of water,	10
	concept of pH and pKa, acid (amino acids) and base titration, diprotic and	
	polyprotic acids, preparing a buffer solution with specific pH, dissociation of	
	amino acid, isoelectric point, titration of protein.	
III	Bioenergetics: Concept of free energy, standard free energy, determination of	20
	ΔG for a reaction. Relationship between equilibrium constant and standard	
	free energy change, biological standard state & standard free energy change in	
	coupled reactions, Gibbs energy of biological membrane transport. Biological	

	oxidation-reduction reactions, redox potentials, relation between standard reduction potentials & free energy change. High energy phosphate compounds: introduction, phosphate group transfer, free energy of hydrolysis of ATP and sugar phosphates along with reasons for high ΔG .		
IV	Kinetics of biochemical reaction: Biochemical equilibrium and protein ligand	20	
	binding mechanism. Kinetics of zero & first order reactions. Classification of		
	multi substrate reactions with examples of each class. Derivation of the rate of		
	expression for Ping Pong, random & ordered Bi-Bi mechanisms, denaturation		
	and renaturation kinetics of DNA and protein, Cot curve.		

- 1. L. Stryer, (2002). Biochemistry, 5th Edition, Freeman &Co. New York.
- 2. D.L. Nelson and M.M. Cox, Lehninger (2002). Principles of Biochemistry 3rd Edition. McMillan North Publication.
- 3. D. Voet, J. G. Voet, Biochemistry 3rd Edition (2004), Wiley International Publication.

SEMESTER: IV Course Code: BOT-1004T-A Paper Title: Bioinformatics

Unit	Syllabus	Teaching Hours		
I	Introduction to Bioinformatics: Introduction, Branches of Bioinformatics, Aim,	10		
	Scope and Research areas of Bioinformatics. Databases in Bioinformatics:			
	Introduction, Biological Databases, Classification format of Biological			
	Databases, Biological Database Retrieval System.			
II	Biological Sequence Databases: National Center for Biotechnology Information	20		
	(NCBI): Tools and Databases of NCBI, Database Retrieval Tool, Sequence			
	Submission to NCBI, Basic local alignment search tool (BLAST), Nucleotide			
	Database, Protein Database, Gene Expression Database. EMBL Nucleotide			
	Sequence Database (EMBL-Bank): Introduction, Sequence Retrieval, Sequence			
	Submission to EMBL, Sequence analysis tools. DNA Data Bank of Japan			
	DDBJ): Introduction, Resources at DDBJ, Data Submission at DDBJ. Protein			
	Information Resource (PIR): About PIR, Resources of PIR, Databases of PIR,			
	Data Retrieval in PIR. Swiss-Prot: Introduction and Salient Features.			
III	Alignment of sequences: Introduction to sequence analysis, models for	15		
	sequence analysis (local, global, end free space alignment and gap penalty),			
	Multiple Sequence Alignment (MSA), MSA by CLUSTALW, Scoring Matrices,			
	Percent Accepted Mutation (PAM), Blocks of Amino Acid Substitution Matrix			
	(BLOSUM). Molecular Phylogeny: Methods of Phylogeny, Software for			
	Phylogenetic Analyses, Consistency of Molecular Phylogenetic Prediction.			
IV	Databases used in agricultural biotechnology. Applications of Bioinformatics:	15		
	Structural Bioinformatics in Drug Discovery, Quantitative structure-activity			
	relationship (QSAR) techniques in Drug Design, Microbial genome			
	applications, Crop improvement.			

Suggested Readings:

1. Ghosh Z. and Bibekanand M. (2008). Bioinformatics: Principles and Applications. Oxford University Press.

- 2. Pevsner J. (2009) Bioinformatics and Functional Genomics. II Edition. Wiley-Blackwell.
- 3. Campbell A. M., Heyer L. J. (2006) Discovering Genomics, Proteomics and Bioinformatics. _II Edition. Benjamin Cummings

SEMESTER: IV Course Code: BOT-1004T-B Paper Title: Plant Pathology

Unit	Syllabus	Teaching Hours
I	Defense mechanisms of plants against infection: Preexisting structural and chemical defense, induced structural and chemical defense, hypersensitive reaction, role of phytoalexins and other phenolic compounds. Management of plant diseases: Cultural, chemical, biological, biopesticides, breeding for resistant varieties, plant quarantine, integrated pest management. Post-harvest pathology: Fungal deterioration of food commodities, mycotoxins and health hazards, control measures.	15
II	Physiological and Molecular Plant Pathology: Altered metabolism of plants under biotic and abiotic stresses. Molecular mechanisms of pathogenesis: recognition phenomenon, penetration, invasion, primary disease determinant. Enzymes and toxins in relation to plant disease. Mechanisms of resistance. Phytoalexins. PR proteins. Antiviral proteins. SAR. HR and active oxygen radicals. Tissue culture. Somaclonal variation and somatic hybridization. Elementary genetic engineering. Management of pathogens through satellite, antisense - RNA. Ribozymes, coat protein, hypovirulence cross protection/useful genes and promoter technology biosafety and bioethics.	20
III	Study of plant diseases caused by fungi, bacteria, viruses, nematodes and mycoplasma like organisms: Wart disease of potato, blight of colocasia, downy mildew of cucurbits, stem gall of coriander, peach leaf curl, ergot of bajra, smut of sugarcane, Karnal bunt of wheat, linseed rust, Tikka disease of groundnut, red rot of sugarcane, Panama disease (Fusarium wilt) of banana, bacterial blight of rice, leaf curl of tomato, yellow vein mosaic of bhindi, mosaic of sugarcane, potato spindle tuber mosaic, ear cockles of wheat, grassy shoot of sugarcane, phylloidy of sesamum, Citrus greening	15
IV	Management of Plant diseases: General principles of plant quarantine. Sanitary and phytosanitary issues under WTO, TRIPS and PRA. Production of disease free seeds and planting materials. Seed certification. Chemical nature and classification of fungicides and antibiotics: their bioassay and compatibility with other agricultural chemicals; resistance to fungicides/antibiotics; effect on environment.	10

- 1. Agrios, G.N. (1997). Plant Pathology, 4th edition, Academic Press, U.K.
- 2. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley & Sons (Asia) Singapore. 4th edition.
- 3. Webster, J. and Weber, R. (2007). Introduction to Fungi, Cambridge University Press, Cambridge. 3rd edition.
- 4. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, Macmillan Publishers India Ltd.
- 5. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, India.

SEMESTER: IV Course Code: BOT-1005P Paper Title: Practical Lab 4

Practical will be based on all the courses of Semester IV.

SEMESTER: IV Course Code: MO-04 Paper Title: Biodiversity and Conservation

Unit	Syllabus	Teaching
		Hours
I	Introduction to biodiversity: Levels of biodiversity: Genetic, species,	15
	community and ecosystem	
II	Magnitude and distribution: Diversity gradients and related hypotheses,	20
	methods for biodiversity monitoring, megadiversity zones and hot spots	
	Biodiversity and ecosystem functions: Concepts and models.	
III	Biodiversity and ecosystem services: Provisioning, regulating, supporting	15
	and cultural. Threats to biodiversity: Causes of biodiversity loss, species	
	extinction, vulnerability of species to extinction, IUCN threat categories, Red	
	data book.	
IV	Strategies for biodiversity conservation: Principles of biodiversity	10
	conservation, in-situ and ex-situ conservation strategies; Biodiversity act	

- 1. Primack, (2014). Essentials of Conservation Biology, 6th ed. Sinauer.
- 2. Groom, (2005). Principles of Conservation Biology, 3rd ed. Sinauer.
- 3. van Dyke (2008). Conservation Biology, 2nd ed. Springer.
- 4. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya Publications, New Delhi, India.

The marks break-up for the credit course examination (Botany) is as follows:

<i>.</i>	Course (Core Compulsory/Core Elective	/ Minor):-	Marks
distribution for the 4 credits			
	(a) Examination	20 Marks	
	(b) Assignments/ Seminars/	05 Marks	30
Internal Assessment	Presentations		- Marks
	(c) Overall performance (Attendance	05 Marks	Iviains
	etc.)		
External Assessment	End-Semester Examination	70 Marks	70
External Assessment			Marks
			100 Marks
Assessment Type: Practical	Lab Course:- Marks distribution for th	e 4 credits	
	(a) Regularity in the Lab/ Collection,	10 Marks	
Internal Assessment	Model etc.		
Internal Assessment	(b) Assignment/ Record	10 Marks	30 Marks
	(c) Viva	05 Marks	
	(d) Field work/ Excursion/ Term work/	05 Marks	
	Synopsis etc.		
	(a) Write-up/ Exercise	20 Marks	
External Assessment	(b) Viva/ Record/ Field Work	25 Marks	70 Marks
External rissessment	(c) Lab Execution/Performance/	25 Marks	70 WILLIAG
	Demonstration		
			100 Marks
0.	al Training/ Research Project/ Survey fo		
	vill be taken by a student at the begin		
and 3rd semester. At the er	nd of the 2 nd semester & 4 th semester	, the cand	idate will
submit the research project.			
Evaluated by One Internal	(a) Active Participation	30 Marks	
Evaluated by One Internal and External Examiner	(b) Records/ Assignments	30 Marks	
and external examiner	(c) Presentation/ Viva-Voce	40 Marks	
		Total:	100 Marks