Course Structure and syllabus for B.Tech Biotechnology Engineering Programme

COURSE STRUCTURE
STUDY AND EVALUATION SCHEME
YEAR I, SEMESTER-I
B. Tech. BIOTECHNOLOGY ENGINEERING

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
<th>Subject Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>SESSIONAL EXAM.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CT TA Total</td>
<td>ESE</td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>*MA-102/ BT-101</td>
<td>Elementary Mathematics-I /Remedial Biology</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>2.</td>
<td>HU-101</td>
<td>Professional Communication</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>3.</td>
<td>PH-101/ CY-102</td>
<td>PHYSICS/ CHEMISTRY</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>4.</td>
<td>EE-101/ ME-101</td>
<td>Electrical Engineering/ Mechanical Engineering</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>5.</td>
<td>EC-101/ CS-101</td>
<td>Electrical Engineering/ Information Technology</td>
<td>3 1 0</td>
<td>30 20 50</td>
<td>100</td>
</tr>
<tr>
<td>PRACTICAL/TRAINING/PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PH-151/ CY-151</td>
<td>PHYSICS/ CHEMISTRY</td>
<td>0 0 2</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>7.</td>
<td>EE-151/ ME-151</td>
<td>Electrical Engineering/Mechanical Engineering</td>
<td>0 0 2</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>8.</td>
<td>CS-151/ WS-151</td>
<td>Computer Programming Lab/Workshop Practice</td>
<td>0 1 2</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>9.</td>
<td>CE-151</td>
<td>Engineering Graphics</td>
<td>0 0 3</td>
<td>10 10 20</td>
<td>30</td>
</tr>
<tr>
<td>10.</td>
<td>GP-101</td>
<td>General Proficiency</td>
<td>- - -</td>
<td>- - -</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15 6 9</td>
<td>- - -</td>
<td>-</td>
</tr>
</tbody>
</table>

NOTE:

Elementary Mathematics is for the students who passed 10+2 examination with Biology and Remedial Biology is for the students who passed 10+2 with Mathematics.
<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>MA-202/BT-201</td>
<td>Elementary Mathematics-II/ Remedial Biology II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>CE-201</td>
<td>Environmental Studies</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>PH-201/CY-201</td>
<td>PHYSICS/ CHEMISTRY</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>EE-201/ME-201</td>
<td>Electrical Engineering/Mechanical Engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>EC-201/IT-201</td>
<td>Electrical Engineering/Information Technology</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PRACTICAL/TRAINING/PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>PH-251/CY-251</td>
<td>PHYSICS/ CHEMISTRY</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>EE-251/ME-251</td>
<td>Electrical Engineering/Mechanical Engineering</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>CS-251/WS-251</td>
<td>Computer Programming Lab/Workshop Practise</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>9</td>
<td>HU-251</td>
<td>Communication Lab (English)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>GP-201</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>15</td>
<td>6</td>
<td>9</td>
<td>-</td>
</tr>
</tbody>
</table>
STUDY AND EVALUATION SCHEME
YEAR II, SEMESTER-III
B. Tech. BIOTECHNOLOGY ENGINEERING

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
<th>Subject Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>1.</td>
<td>BT 301</td>
<td>Biochemistry</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>BT-302</td>
<td>Microbiology & Cell Biology</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>CH-301</td>
<td>Fluid Flow and Solid Handling</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>MA-302</td>
<td>Statistical Techniques</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CS-306</td>
<td>Data structure & Algorithms</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

PRACTICAL/TRAINING/PROJECT

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
<th>Subject Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>BT 351</td>
<td>Biochemistry Lab</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>BT-352</td>
<td>Microbiology Lab</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>8.</td>
<td>CH-351</td>
<td>Fluid Mechanics Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>GP-301</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>15</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
INSTITUTE OF ENGINEERING & TECHNOLOGY
BUNDELKHAND UNIVERSITY, JHANSI

STUDY AND EVALUATION SCHEME
YEAR II, SEMESTER-IV
B. Tech. BIOTECHNOLOGY ENGINEERING

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
<th>Subject Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BT-401</td>
<td>Immunology</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>BT-402</td>
<td>Enzymology</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>BT-403</td>
<td>Genetics & Molecular Biology</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>BT-404</td>
<td>Bioinformatics-I</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5.</td>
<td>CH-401</td>
<td>Heat Transfer Operations</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICAL/TRAINING/PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BT-451</td>
<td>Immunology Lab</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>BT-452</td>
<td>Genetics & Molecular Biology Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>BT-453</td>
<td>Bioinformatics-I Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>GP-401</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>S. No.</td>
<td>Course Code</td>
<td>Subject</td>
<td>PERIODS</td>
<td>Evaluation Scheme</td>
<td>Subject Total</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>--------------------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L T P</td>
<td>CT TA Total ESE</td>
<td></td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BT 501</td>
<td>Biophysical Techniques</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150</td>
</tr>
<tr>
<td>2.</td>
<td>BT-502</td>
<td>Bioprocess Engineering-I</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150</td>
</tr>
<tr>
<td>3.</td>
<td>HU-501</td>
<td>Industrial Economics & Principle of Management</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150</td>
</tr>
<tr>
<td>4.</td>
<td>CH-501</td>
<td>Mass Transfer Operations-I</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150</td>
</tr>
<tr>
<td>5.</td>
<td>CS-506</td>
<td>Design & Analysis of Algorithm</td>
<td>3 1 0</td>
<td>30 20 50 100</td>
<td>150</td>
</tr>
<tr>
<td>PRACTICAL/TRAINING/PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BT-552</td>
<td>Bioprocess Engineering Lab</td>
<td>0 0 6</td>
<td>0 40 40 60</td>
<td>100</td>
</tr>
<tr>
<td>7.</td>
<td>CS-551</td>
<td>Design & Analysis of Algorithm Lab</td>
<td>0 0 6</td>
<td>0 40 40 60</td>
<td>100</td>
</tr>
<tr>
<td>8.</td>
<td>GP 501</td>
<td>General Proficiency</td>
<td>- - -</td>
<td>- 50 -</td>
<td>- 50</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>15 5 12</td>
<td>- - -</td>
<td>- 1000</td>
</tr>
</tbody>
</table>
INSTITUTE OF ENGINEERING & TECHNOLOGY
BUNDELKHAND UNIVERSITY, JHANSI

STUDY AND EVALUATION SCHEME
YEAR III, SEMESTER-VI
B. Tech. BIOTECHNOLOGY ENGINEERING

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>SUBJECT</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BT-601</td>
<td>Bioinformatics-II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>BT-602</td>
<td>Plant Biotechnology</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>BT-603</td>
<td>Fermentation Biotechnology</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>BT-604</td>
<td>Genetic Engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>CH-601</td>
<td>Mass Transfer Operations-II</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PRACTICAL/TRAINING/PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>BT-651</td>
<td>Bioinformatics-II Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7.</td>
<td>BT-653</td>
<td>Fermentation Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8.</td>
<td>BT-654</td>
<td>Genetic Engineering Lab</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9.</td>
<td>GP-601</td>
<td>General Proficiency</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>S. No.</td>
<td>Course Code</td>
<td>Subject</td>
<td>PERIODS</td>
<td>Evaluation Scheme</td>
</tr>
<tr>
<td>-------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>-------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
</tr>
<tr>
<td>1.</td>
<td>OE</td>
<td>Open Elective</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>2.</td>
<td>CH-701</td>
<td>Chemical Reaction Engineering</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>BT-701</td>
<td>Environmental Biotechnology</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>BT-702</td>
<td>Elective-I</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>5.</td>
<td>BT-703</td>
<td>Elective-II</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

THEORY

PRACTICAL/TRAINING/PROJECT

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Subject</th>
<th>PERIODS</th>
<th>Evaluation Scheme</th>
<th>Subject Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.</td>
<td>BT-751</td>
<td>Environmental Biotechnology Lab</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>7.</td>
<td>BT-752</td>
<td>Seminar</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>BT-753</td>
<td>Industrial Training</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9.</td>
<td>BT-754</td>
<td>Mini Project</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>10.</td>
<td>GP 701</td>
<td>General Proficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
<td>5</td>
<td>12</td>
</tr>
</tbody>
</table>
Study and Evaluation Scheme

Year IV, Semester-VIII
B. Tech. Biotechnology Engineering

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Course Code</th>
<th>Subject</th>
<th>Periods</th>
<th>Evaluation Scheme</th>
<th>Subject Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>L</td>
<td>T</td>
<td>P</td>
</tr>
<tr>
<td>THEORY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.</td>
<td>BT-801</td>
<td>Bioprocess Engineering-II</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.</td>
<td>BT-802</td>
<td>Bioseparation & Down Stream Processing</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3.</td>
<td>BT-803</td>
<td>Elective -III</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4.</td>
<td>BT-804</td>
<td>Elective-IV</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PRACTICAL/TRAINING/PROJECT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>BT-851</td>
<td>*Project & Seminar</td>
<td>0</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>6.</td>
<td>GP-801</td>
<td>General Proficiency</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td></td>
<td>12</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

*out of 12 periods, 2 periods per week should be allotted for a group and 10 periods per week should be allotted for self studies & project work.
SYLLABUS
I

SEMESTER
PHYSICS (PH-101/ PH-201)

Unit – I: Relativistic Mechanics

Unit – II: Interference

Unit – III: Polarization
Phenomenon of Double Refraction, Ordinary and Extra-ordinary Rays, Nicol Prism, Production and Analysis of Plane, Circularly and Elliptically Polarized Light, Fresnel Theory, Optical Activity, Specific Rotation, Polarimeter.

Unit – IV: Electromagnetic
Magnetic Properties of Materials
Basic Concept of Para-, Dia and Ferro-Magnetism, Langevin’s Theory of Diamagnetism, Phenomenon of Hysterisis and Its Applications

Unit – V: X-Rays

References:
1. Robert Resmick: Introduction to Special Theory of Relativity
2. Arthur Beiser: Perspectives of Modern Physics
3. A.K. Ghatak: Optics
4. Wehr Richords & Adia: Physics of Atoms
1. To determine the wavelength of monochromatic light by Newton’s ring.

2. To determine the wavelength of monochromatic light with the help of Fresnel’s biprism.

3. To determine the focal length of two lenses by nodal slide and locate the position of cordial points.

4. To determine the specific rotation of cane sugar solution using half shade polarimeter.

5. To determine the wavelength of spectral lines using plane transmission grating.

6. To determine the specific resistance of the material of given wire using Crey fosterbridge.

7. To determine the variation of magnetic field along the axis of a current carrying coil and then to estimate the radius of the coil.

8. To verify stefans Law by electrical method.

9. To Calibrate the the given ammeter and volmeter.

10. To study the Hall effect and determine Hall coefficient, carrier density and mobility of given semiconductor material using Hall effect set up.

11. To determine energy bank gap of a given semiconductor material

12. To determine E.C.E of copper using Tangent or Holmholtz galvanometer.

13. To determine the ballistic constant of a ballistic galvanometer.

14. To determine the viscosity of a liquid.
ELECTRONICS ENGINEERING (EC-101/EC-201)

Unit – I
Semiconductor materials and properties
Group-IV materials, Covalent bond, electron-hole concepts, Basic concepts of energy bands in materials, concept of forbidden gap, Intrinsic and extrinsic semiconductors, donors and acceptors impurities
Junction diode
P-n junction, depletion layer, v-i characteristics, diode resistance, capacitance, diode ratings (average current, repetitive peak current, non-repetitive current, peak-inverse voltage).

Unit-II
Diode Applications
Rectifiers (half wave and full wave), calculation of transformer utilisation factor and diode ratings, Filter (C-filter), calculation of ripple factor and load regulation, clipping circuits, clamping circuits, Voltage multipliers, Breakdown diodes Breakdown mechanisms (zener and avalanche),breakdown Characteristics, zener resistance, zener ,Diode ratings, zener diode application as shunt regulator

Unit-III
Bipolar Junction Transistor
Basic construction, transistor action, CB, CE and CC configurations, input/output characteristics, Biasing of transistors-fixed bias, emitter bias, potential divider bias, comparison of biasing circuits. Transistor Amplifier Graphical analysis of CE amplifier, concept of voltage gain, current gain, h-parameter model (low frequency), computation of A_i, A_v, R_i, R_o of single transistor CE and CC amplifier configurations.

Unit-IV
Field Effect Transistor
JFET: Basic construction, transistor action, concept of pinch off, maximum drain saturation current, input and transfer characteristics, characteristic equation C_G, C_S and C_D configurations, fixed-, self-biasing, MOSFET: depletion and enhancement type MOSFET-construction, operation And characteristics. Computation of A_v, R_i, R_o, of single FET amplifiers using all the three configurations

Unit-V
Switching theory and logic design
Number systems, conversion of bases, Boolean algebra, logic gates, concept of universal gate, canonical forms. Minimization using K-map
Operational Amplifiers
Concept of ideal operational amplifiers, ideal op-amp parameters, inverting, non-inverting and unity gain amplifiers, adders, difference amplifiers, integrators

Reference:
1. Boylestad and Nashelsky, ‘Electronic Devices and circuits’ PHI, 6e, 2001
2. A.Mottershead, Electronic device and circuits, PHI,2000

PROFESSIONAL COMMUNICATION (HU-101)
Unit – I: Technical Communication

Unit-II : Pre-Requisites of Technical Written Communication
Vocabulary Building : Homophones (Words Similar in sound but different in Meanings); Word-formation; One-Word substitute; New & Select Vocabulary Building (about 500 words)
Functional Grammar: Patterns and Correct usage (Parts of speech); Syntax Concord; Prepositions; Articles.
Requisites of Good Sentence and Paragraph Writing: Requisites of Good Sentence Writing; Paragraph Writing; Unity, Coherence and Emphasis; Development of Paragraph: Inductive Order, Deductive Order, Spatial, Linear, Chronological Orders etc. with Emphasis on Argumentative & Expository Writing.

Unit : III : Business Correspondence: Principles; Features; Sales and Credit Letters: Letters of Enquiry, Quotation, Order, Claim, Complaint and Adjustment letters, Bio-Data Making, Resumes/Job Application Processing.

Unit-IV : Language Learning Through Thematic and Value based Critical Reading (Non-Detailed Text Study) :
A Study of following Value-Oriented Essays:
A.L.Basham : The Heritage of India
S. Radhakrishnan : The Gandhian Outlook
Francis Bacon : Of Studies
J.B. Priestley : Making Writing Simple
Virginia Wooef : How should one Read a Book
R.K. Narayan : A Bookish Topic
C.E.M. Joad : The Civilization of Today
Study of following Short Stories for making the Students acquaint with the styles of great Writers of World:
O.H. Henry : The Gift of the Magi
R.N. Tagore : The Renunciation
Katherine Mansfield : The Fly
A.P. Chekhor : The Lament
M.R. Anand : The Barber’s Trade Union
Ruskin Bond : The Eyes Are Not Here
D.H. Lawrence : The Rocking Horse Winner
Ernest Hemingway : The Capital of the World

Unit-V : Dimensions of Spoken English: Using English Language Laboratory :
Stress, Intonation, Rhythm, Phonemes, Allophones, Phonetic Transcription, Listening, Reading & Comprehension of Speech and Reproduction of Response.

Texts Books/ References
Hornby A.S. : Guide to Patterns & Usage in English; OUP, New Delhi
Clark S. & Pointon : Word for Word; OUP, New Delhi
Ruther Ford A. : Basic Communication Skills; Person Education, New Delhi.
Singh R.P. : Functional Skills in Language & Literature; OUP, New Delhi
Bansal R.K. & Harrison : Phonetics in English; Orient Longman, New Delhi
Sethi & Dhamija : A Course in Phonetics & Spoken English; Prentice Hall, New Delhi.
Blum Rosen : Word Power; Cambridge University Press, New Delhi
Seely John : Writing Report; OUP, New Delhi
Suggested Readings :
Arora V.N. etal : Improve Your Writing; OUP Delhi
A Dictionary of Modern English Usages; OUP, New Delhi
Michael Swan : Practical English Usages; OUP, New Delhi
ELEMENTARY MATHEMATICS-I (MA-102)

Unit I: CALCULUS
Limits and Derivatives: Derivative introduced as rate of change both as that of distance function and geometrically, intuitive idea of limit. Definition of derivative, relate it to slope of tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.

Unit II:
Continuity and Differentiability: Continuity and differentiability, derivative of composite functions, chain rule, derivatives of inverse trigonometric functions, derivative of implicit function. Concept of exponential and logarithmic functions and their derivative. Logarithmic differentiation. Derivative of functions expressed in parametric forms. Second order derivatives. Rolle’s and Lagrange’s Mean Value Theorems (without proof) and their geometric interpretations.
Applications of Derivatives: Applications of derivatives: rate of change, increasing/decreasing functions, tangents and normals, approximation, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

Unit III:
Integrals: Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, only simple integrals of the type to be evaluated. Definite integrals as a limit of a sum. Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.
Applications of the Integrals: Applications in finding the area under simple curves, especially lines, areas of circles/parabolas/ellipses (in standard form only), area between the two above said curves (the region should be clearly identifiable).

Unit IV:
Differential Equations: Definition, order and degree, general and particular solutions of a differential equation. Formation of differential equation whose general solution is given. Solution of differential equations by method of separation of variables, homogenous, differential equations of first order and first degree. Solutions of linear differential equation of the type: +py=q, where p and p are functions of x.

Unit V: PROBABILITY
Random experiments: outcomes, samples spaces (set representation). Events: occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events Axiomatic (set theoretic) probability, connections with the theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ & ‘or’ events. Multiplication theorem on probability. Conditional probability, independent events, total probability, Baye’s theorem, Random variable and its probability distribution, mean and variance of haphazard variable, Repeated independent (Bernoulli) trials and Binomial distribution.
Recommended Textbooks
1) Mathemati Mes Part I – Textbook for Class XI, NCERT Publication
2) Mathemati Mes Part II – Textbook for Class XI, NCERT Publication

Recommended Textbooks
1) Mathemati Mes Part I – Textbook for Class XII, NCERT Publication
2) Mathemati Mes Part II – Textbook for Class XII, NCERT Publication

Reference Books:
1) Engineering Mathematics by B.V. Ramana (Tata McGraw Hill)
 Advanced
2) modern engineering mathematics by Glyn James (Pearson Education)
 High

Reference Books:
2. Engg Mathematics (vol-I) by H.K. Dass, S Chand publication.
REMEDIAL BIOLOGY-I (BT-101)

UNIT – I
Diversity in Living World. Diversity of living organisms. Classification of the living organisms (five kingdom classification, major groups and principles of classification within each kingdom) Systematics and binomial System of nomenclature.

UNIT – II
Salient features of animal and plant classification, viruses, viroids, lichens, Botanical gardens, herbaria, zoological parks and museums.

UNIT – III
Structural Organisation. Tissues in animals and plants. Morphology, anatomy and functions of different parts of flowering plants. Root, stem, leaf, inflorescence, flower, fruit and seed.

UNIT – IV
Cell: Structure and Function Cell : Cell theory, Prokaryotic and eukaryotic cell, cell wall, cell membrane, Nucleus and nuclear organization, Mitosis, Meiosis, Cell Cycle (elementary idea) Basic chemical constituents of living bodies.

UNIT-V
Plant Physiology. Movement of water, food, nutrients and gases, Respiration, Photosynthesis, Plant growth and development.

Recommended Textbooks

1) Biology – Textbook for Class XI, NCERT Publication
2) Biology - Textbook for Class XII, NCERT Publication

Reference Book

Biology by Peter H Raven, George B Johnson, Kenneth A Mason, Jonathan Losos, Susan Singer (Tata Mcgraw Hill)
ELECTRICAL ENGINEERING (EE-101/EE-201)

Unit I:
Steady State Analysis of A.C. Circuits:

Unit II:
D.C. Network Theory:
Measuring Instruments: Construction and principle of operation of voltage and current measuring instruments; introduction to power and energy meters.

Unit III:
Three Phase A.C. Circuits:
Star-Delta connections, line and phase voltage/current relations, three phase power and its measurement.

Unit IV:
D.C. Machines
Principle of electromechanical energy conversion, types of d.c. machines, E.M.F. equation, Magnetization and load characteristics, losses and efficiency, speed control, DC motors, applications.
Three phase Synchronous Machines: Principle of operation and application of synchronous motor.

Unit V:
Three phase induction Motor
Principle of operation, types and methods of starting, slip-torque characteristics, applications.

References:

ELECTRICAL ENGINEERING LAB (EE-151/EE-251)

1. Verification of Newt work Theorems.
2. Study of diode characteristics.

3. To study a half wave and full wave rectifier circuit with without capacitor filter and determine the ripple factor.

4. Determination of common base and common emitter characteristics of a transistor.

5. Study of phenomenon of resonance in RLC series circuit.

8. Determination of parameter and losses in a single phase transformer by OC and SC test.

9. DC generator characteristics.

10. Speed control of DC shunt motor.

11. Study running and reversing of a three phase induction motor.

12. Study of single phase energy meter.

13. To study the various logic gates (TTL).

References:
3. Experiment in Electrical Engg.- J.B. Gupta
WORKSHOP PRACTICE (WS-151/251)

Carpentry Shop: 1. study of tools and operation and carpentry joints.
Simple exercise using jack plain. To prepare half lap corner joint, mortise and tenon joints.
Simple exercise on woodworking lathe.

Fitting Bench working shop: 1. Study of tools and operations.
2. Simple exercise involving filling work.
3. Making perfect male female joint.

Black smith Shop: 1. Study of tool and operation.
2. Simple exercises based on black smithy operations such as upsetting, drawing down, punching, bending, fullering & swaging.

Welding Shop: 1. Study of tools and operations.
2. Simple butt joint.
3. Lap joint.
4. Oxy acetylene welding.

Sheet metal shop: 1. Study of tools and operations.
2. Making funnel complete with soldering.
3. Fabrication of tool box, tray electrical panel box, etc.

Machine Shop: 1. Study of tools and operations.
2. Plane turning.
3. Step turning
4. Taper turning
5. Threading

References:
 1. Raghuvashi: Workshop Practice
 2. A.Ashif: Workshop Practice
ENGINEERING GRAPHICS (CE-151)

Unit I:
Introduction
Graphics as a tool to communicate ideas, lettering and dimensioning, construction of geometrical figures like-pentagon and hexagon.

Unit II:
Orthographic Projection.
Principles of orthographic projections, Principal and auxiliary planes, First and third angle projections.

Unit III:
Projection of points, Pictorial view.
Projection of lines parallel to both the planes. Parallel to one and inclined to other, Inclined to both the plane.

Unit IV:
Application to practical problems.
Projection of solid in simple position, axis or slant edge inclined to one and parallel to other plane, solids lying on a face or generator on a plane. Section of solid lying in various positions, True shape of the section. Development of lateral surface, sheet metal drawing.

Unit V:
Isometric projection:
Principles of isometric projection, Isometric projection using box and offset methods.

References:
1. Bhatt: Elementry Engg. Drawing, Charothar publication
II
SEMESTER
MECHANICAL ENGINEERING (ME-101/201)

A. THERMODYNAMICS

Unit I : Fundamental Concepts and Definitions
Definition of thermodynamics, system, surrounding and universe, phase, concept of continuum, macroscopic & microscopic point of view. Density, specific volume, pressure, temperature. Thermodynamic equilibrium, property, state, path, process, cyclic process, Energy and its form, work and heat, Enthalpy.

Laws of thermodynamics
Zeroth law: Concepts of Temperature, zeroth law.
First law: First law of thermodynamics. Concept of processes, flow processes and control volume, Flow work, steady flow energy equation, Mechanical work in a steady flow of process.

Unit II : Properties of steam and thermodynamics cycles:

B. MECHANICS AND STRENGTH OF MATERIALS

Unit III : Force system and Analysis
Friction: Introduction, Laws of Coulomb friction, Equilibrium of bodies involving dry fiction-Belt Friction.

Unit IV : Structure Analysis
Beams: Introduction, Shear force and Bending Moment, shear force and Bending Moment Diagram for statically determinate beams.

Unit V : Stress and Strain Analysis
Simple stress and strain: Introduction, Normal shear stresses, stress-strain diagrams for ductile and brittle materials, Elastic constants, one dimensional loading of members of varying cross sections, strain Energy.

Compound stress and strains: Introduction, state of plane stress, Principal stress and strain, Mohr’s stress circle.
Pure Bending of Beams: Introduction, Simple Bending theory, Stress in Beams of different cross sections.
Torsion: Introduction, Torsion of Shafts of circular section, Torque and Twist, Shear stress due to Torque.

Reference:
3. G.H. Ryder: Strength of materials
4. Yadav R.: Steam & Gas Turbines
MECHANICAL ENGINEERING LAB (ME-251)

1. Study of boiler models- Babcock Wilcox, Lancashire and locomotive.
2. Study of steam engine and stem turbine models.
3. Study of 2- stroke and 4- stroke I.C.E model.
4. Study of faite engine and or diesel engine prototype.
5. Study of vapor compression refrigeration unit tutor/ refrigerator.
6. Study of window type air conditioner.
7. To conduct the tensile test on a UTM and determine ultimate tensile strength percentage elongation for a steel specimen.
8. To conduct the impact test (Izod/charpy) on the impact testing machine and to find the impact strength.
9. To conduct the compression test and determine the ultimate compressive strength for a specimen.
10. To determine the hardness of the given specimen using Brinell/ Rockwell/Vicker testing machine.

References:
1. Dr. D. S. Kumar: Mechanical Engineering Katon Publisher

COMMUNICATION LAB (HU-251)
1. **Stress in speech**: based on accentual Patterns.

2. **Intonation-pattern practice**: Rising Falling and level tones.

3. **Rhythm in speech**: practices on strong and weak form words.

4. **Individual conferencing/speaking alone with quizzes**.

5. **Conversation skill for interview/seminar/workshops** with emphasis on kinesis along with promotion of phonetic script skills.

7. **Official/Public Speaking**: Practices based on mechanics of articulation.

8. **Theme presentation**: Practices based on linguistic patterns.

9. **Developing argument skills/Role play presentation** with proper rhythmic stress.

10. **Testing comprehension**: Reading and listening exercises with the use of audio-visual aids.
11. **Audience-based Effective speech production**.
Unit I:
Molecular theory of diatomic hetero molecules, Bond theory of bonding in metals, Hydrogen bonding.

Solid state Chemistry: Radius Ratio Rule, Space lattice (only cubes), Type of unit cell, Bragg’s Law, Calculation of Density of unit cell. One & Two Dimensional solid, graphite as two dimensional solid and its conducting properties. Fullerene & its applications.

Unit II:
Basic principles of spectroscopic methods. The use of UV, Visible, IR, 1H NMR, for the determination of structure of simple organic compounds., Characteristics and classification of polymers., Structures of the following polymers, viz, Natural and synthetic rubbers, Polyamide and Polyester fibers, polymethylmethacrylate, poly acrylonitrile and polystyrene. A brief account of conducting polymers (polypyrrrole & polypiphen) & their applications.

Unit III:
Stability of reaction intermediates, e.g. Carbanion, Carbocation and free radicals. Types of organic reactions, & Mechanism of nucleophilic substitution reaction. Mechanism of the following reactions.(i) Aldol condensation. (ii) Cannizzaro reaction (iii) Beckmann rearrangement (iv) Hofmann rearrangement, and (v) Diels-Alder reaction

Unit IV:

Unit V:

References:
1. Organic Chemistry (Morrison & Boy)
2. Inorganic Chemistry (I.D. Lee)
3. Physical Chemistry (Barrow)
4. Environmental chemistry (Manahan)
5. Chemistry Practical(CY-151/CY-252)
CHEMISTRY PRACTICAL (CY-151/CY-252)

1. Determination of alkalinity in given water sample.
2. Determination of temporary and permanent hardness in water sample using EDTA as standard solution
3. Determination of available chlorine in bleaching powder.
4. Determination of chloride content in the given water sample by Mohr’s method.
5. Determination of iron content in the given ore using external indicator.
6. PH metric titration.
7. Determination of equivalent weight of iron by the chemical displacement method. The equivalent weight of copper is 63.5
8. Viscosity of an addition polymer like polyester by viscometer.

References:
1. Engg. Chemistry by Grutu and Mittle, Pragati publication
2. Engg. Chemistry by Sashi chawla
INFORMATION TECHNOLOGY (IT-101/IT-201)

Unit I: Fundamental Concept of Information

Information Concept and Processing: Definition of information, Data Vs Information, Introduction to Information representation in Digital Media, Text, image, graphics, Animation, Audio, Video etc., Need, Value and Quality of information, Concept of Information Entropy, Shannon’s Principles, Entropy of Information, use of Entropy in Coding, Static & Dynamic codes, Category and Level of Information in Business Organization.

Information Representation: Information Content, Entropy, Data Compression, Shannon Fano, Huffman Coding, Extended Huffman Codes, Arithmetic Coding, LZ78, LZW coding, Introduction to JPEG, MPEG, MHEG and other IT Industry Standards.

Unit II: Concepts in Computer & Programming

Computer Appreciation: Definition of Electronic Computer, History, Generations, Characteristic and Application of Computers, Classification of Computers, RAM/ROM, Computer Hardware, CPU, Various I/O devices, Peripherals, Storage Media, Software Definition, Role and Categories, Firmware and Humanwer.

Programming Language

Classification & Program Methodology:

Unit III: Digital Devices and Basic Network Concepts

Digital Fundamentals: Various codes, decimal, binary, hexa decimal conversion, floating numbers gates, flip flops, adder, multiplexes, need for Data Transmission over distances, Types of Data Transmission, Media for Data Transmission, Modulation, AM, FM, Digital Modulation, Multiplexing of Signals

Data Communication & Networks:

Unit IV: Internet and Web Technologies

Internet & World Wide Web: Hypertext Markup Language, DHTML, WWW, Gopher, FTP, Telnet, Web Browsers, Net Surfing, Search Engines, Email, ISP, EDI, E-Commerce, Public Key Private Key, Safety of Business Transaction on web.

Unit V: Concepts in Operating System, Office Tools and Data Management
Introductory concepts in operating system & Data Management:
Elementary Concepts in Operating System, textual Vs GUI Interface, Introduction to DOS, MS Windows, MS office Tools, MS word, MS EXCEL, MS Power Point, Tools for Data Management, Basics of Database management system, Introduction to basic Commands of Dbase, FoxPro, SQL Etc.

IT Industry Trends, Careers and Applications in India:

References:
1. D S Yadav, “Foundations of IT”, New Age, Delhi
1. Practical of all internal and external dose commands.

2. Write simple batch program.

3. Giving exposure to windows environment.

4. File and program management in windows.

5. Practice of all UNIX commands.

6. Write simple shell script.

7. Introduction to text editing and word processing.

8. Exposure to advance feature supported by some editors.

10. Creation and usage of E- mail account.

11. Write small program using C language

12. Handling of data structure in C.

13. Familiarizing mail account using PINE, delete, creating folder/ mail- messages, adding signature, creating directory of addresses.
ENVIRONMENTAL STUDIES(CE–201)

Unit I: The Multidisciplinary nature of environmental studies
Definition, scope and importance, Need for public awareness Natural Resources
Renewable and non-renewable resources Natural resources and associated problems.
A) Forest resources: Use and over-exploitation, deforestation, case studies. Timber extraction, mining, dams and their effects on forests and tribal people.
b) Water resources: Use and over-utilization of surface and ground water, floods, drought, conflicts over water, dams-benefits and problems.
c) Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies.
d) Food resources: World food problem, changes caused by agriculture and overgrazing, effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity, case studies.
E) Energy resources: Growing energy needs, renewable and non renewable energy sources, use of alternate energy sources. Case studies.
f) Land resources: Land as resource, land degradation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

Unit II: Ecosystems: Concept of an Ecosystem. Structure and function of an ecosystem.
Food chains, food webs and ecological pyramids. Introduction, types, characteristic features, structure and function of the following ecosystem: (a) Forest ecosystem (b) Grassland Ecosystem (c) Desert ecosystem (d) Aquatic ecosystems (ponds, streams, lakes, rivers, oceans, estuaries)

Unit III: Biodiversity and its conservation
Introduction- Definition : genetic, species and ecosystem diversity, Bio geographical classification of India,
Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic and option values,
Biodiversity at global, National and local levels, India as a mega-diversity nation, Hot-spots of biodiversity,
Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts, Endangered and endemic species of India, Conservation of biodiversity: In-situ Ex-situ conservation of biodiversity.

Unit IV: Environmental Pollution: Definition, Causes, effects and control measures of-
Air Pollution. (b) Water Pollution. (c) Soil Pollution (d) Marine Pollution. (e) Noise Pollution. (f) Thermal Pollution. (g) Nuclear hazards.
Solid waste Management: Causes, effects and control measures of urban and industrial wastes.

Unit V: Social Issues and the Environment
From Unsustainable to Sustainable development, urban problems related to energy, Water conservation, rain water harvesting, watershed management, Resettlement and rehabilitation of people; its problems and concerns.
Case Studies, Environmental ethics: Issues and possible solutions, Wasteland reclamation, Consumerism and waste products, Environment Protection Act, Air (Prevention and Control of Pollution) Act, Water (Prevention

Suggested Field work ,Visit to local area to document environmental assets-river/forest/grassland/hill/mountain, Visit to a local polluted site-Urban/Rural /Industrial / Agricultural, Study of common plants, insects, birds, Study of simple ecosystems-pond, river, hill slopes etc

References
2. Bharucha Erach, The Biodiversity of India, Mapin Publishing Pvt. Ltd. Ahmedabad- 380 013, India
 Email : _HYPERLINK "mailto:mapin@icenet.net" __mapin@icenet.net_ (R)
MATHEMATICS II (MA-201)

Unit I: Differential Equations
Ordinary differential equations of first order, Exact differential equations, Linear differential equations of first order, Linear differential equations of nth order with constant coefficients, Complementary functions and particular integrals, Simultaneous linear differential equations, Solutions of second order differential equations by changing dependent and independent variables, Method of variation of parameters, Applications to engineering problems (without derivation).

Unit II: Series Solutions and Special Functions
Series solutions of ODE of 2nd order with variable coefficients with special emphasis to differential equations of Legendre, and Bessel. Legendre polynomials, Bessel functions and their properties.

Unit III: Laplace Transform
Laplace transform, Existence theorem, Laplace transform of derivatives and integrals, Inverse Laplace transform, Unit step function, Dirac delta function, Laplace transform of periodic functions, Convolution theorem, Application to solve simple linear and simultaneous differential equations.

Unit IV: Fourier Series and Partial Differential Equations
Periodic functions, Trigonometric series, Fourier series of period \(2\pi \), Euler's formulae, Functions having arbitrary period, Change of interval, Even and odd functions, Half range sine and cosine series. Introduction of partial differential equations, Linear partial differential equations with constant coefficients of 2nd order and their classifications - parabolic, elliptic and hyperbolic with illustrative examples.

Unit V: Applications of Partial Differential Equations
Method of separation of variables for solving partial differential equations, Wave equation up to two-dimensions, Laplace equation in two-dimensions, Heat conduction equations up to two-dimensions, Equations of transmission Lines.

References:
3. Engg Mathematics (vol-II) by Manish Goyal, Laxmi publication.
III
SEMESTER
BIOCHEMISTRY (BT–301)

Unit I:
Role of water in biological processes, General Structure and function of amino acids, carbohydrates fats, and vitamins and hormones.

Unit II:
Structure & function of cell well and membrane, membrane lipid,’ protein and carbohydrate, transport across membrane: active. Passive and facilitated, signal transduction J.

Unit III:
Catabolic and ‘anabolic metabolism of carbohydrates (Photosynthesis, Glycolsis, TCA cycle ETS etc), Nitrogen fixation.

Unit IV:
Metabolism of amino acids, nucleic acids, lipids vitamins.

Unit V:
Thermodynamic principles: free energy, Secondary and tertiary Structure of protein, structure and function of hemoglobin and Myoglobin.

Books and Reference

1. Hames and hooper instant notes on biochemistry Vibha Books PVT.Ltd.
3. L.Stryer; Biochemistry.
4. Voet and Voet; Biochemistry; Freeman WH and CH., New York.
5. S.C. Rastogi; Biochemistry ; Tata Macgrow.
1. Estimation of carbohydrates.
2. Estimation of proteins.
4. Isoelectric precipitation.
5. Separation of amino acids by paper chromatography.
7. Thin layer chromatography.
8. Gel electrophoresis.
MICROBIOLOGY & CELL BIOLOGY (BT-302)

Unit I:
Introduction and Classification of “Microbes, isolation and identification of: Microorganism, culture techniques and their maintenance, cell counting methods.

Unit II:
Microbial growth. Kinetics, cell cultivation System, Screening, physical and chemical. Methods for literature control of microorganisms, strain development, Industrial scope of Microbiology.

Unit III:
Characteristics of prokaryotes and eukaryotes, cell oregano laics cell well and membrane” Mitochondria, Nucleolus, Ribosome’s, Golgi bodies, Endoplasmic Reticulum organelles, Cytoskeleton.

Unit IV:
Cell division protein targeting and post translational modification.

Unit V:
Never cell and excitation sale ageing, biology of cancerous cells.

Text Book and References:
1. Prescott Harley and Klevin; Microbiology 2nd Ed.
2. Rorer wi Stainer et Al.
5. Murray Moo-Yong-Comprehensive Biotechnology, 1st Vol.
6. Wistreich and Lechman-Microbiology, Macamillan Co.
9. Microbiology – Peleczar, TMH Publication.,
MICROBIOLOGY & CELL BIOLOGY LAB (BT-352)

1. Preparation of nutrient agar slants, plates and nutrient broth and their sterilization.

2. Inoculation of agar slants, agar plate and nutrient broth.

3. Culture of microorganism using various techniques.

4. Simple and differential staining procedure, endoscope staining, flagellaer staining, cell wall staining, capsular staining, negative staining.

5. Bacterial colony counting.

6. Observation of different vegetative, capsular and spore forms of bacteria & fungus.

7. Isolation of microorganism from soil samples and determination of the number of colony forming units.

8. Study of growth curve of E.coli
STATISTICAL TECHNIQUES (MA-302)

Unit I:
Data type, Classification and summarization of data, diagrams; Ino Graphs, Measures of Dispersion, Skewness and Kurtosis.

Unit II:
Introduction to probability, laws of probability, Baye’s theorem, Binomial distribution poison distribution, Normal distribution and Gaussian distribution.

Unit III:
Positive and Negative correlation, Pearson and Mathew correlation coefficient, Non-parametric tests, Receiver operating characteristics; (ROC) curve, linear and Non linear regression multiple regression.

Unit IV:
Hypothesis tests Chi Square tests and f-tests, variant one way and two way analysis Of variants, ANOVA.

Unit V:
Principles of experimental design and analysis.

Text Book and references

2. Ipsen J et al; Introduction to Biostatistics, Harpet & Row Publication.
3. 3.N.T.J. Baily; Statistical methods in Biology; English University Press.
DATA STRUCTURE AND ALGORITHMS (CS-306)

Unit I: Introduction to data structure and Algorithms:
Performance : Analysis of Algorithm, Time Complexity, Bib-oh notation, Elementary data organization data structure operation, organization data structure operations, Recurrences, Arrays, operations on arrays, representation of arrays in memory, single dimensional multidimensional arrays, Sparse matrices character storing in C, string operation.

Unit II: Statistics, Queues and Linked lists
Stack operation, PUSH and POP, Array representation of stacks, operation associated with Slacks Application of stack, Recursion, Polish expression, Representation queues’ operation on queues’, Priority queues Dquesues, Singly and circularly linked in C, string operations. Lists implements.

Unit III: Tree
Basic terminology, Binary trees representation Algebraic expressions. Complete: Binary trees, extended binary trees, represent binary trees in memory. Linked representation of binary trees, traversing binary tracts & Searching binary searching algorithm, Heaps, general trees, threaded binary tree:

Unit IV: Graphs

Unit –V: Searching and Sorting
Linear search , Binary Search, Internal and External Sorting , Bubble Sorting Insertion Sort, Quick Sort, Two a merge Sort, Heap Sort, sorting on different’ keys, practical J/consideration for internal soaring. External Sorting, Storage’, Devices: Magnetic tapes Disk Storage, Sorting With disks and indexing techniques: Introduction 10 B tree, and B²+ tree, File organization and storage management Introduction 10 hoisting.

Text Books and references:
5. Lipschutz “Data Structure”, Schaum Series,
6. Aho, ho, ocropr, Uttlman Data Structure & Algorithm, Addision Wesely Wcsly

FLUID FLOW AND SOLID HANDLING (CH-301)
Unit I: Solid Handling
Properties of solids, screening, industrial screening equipment, determination of Particle size, screen analysis, size reduction of solids, Of reduction, operating intermediate and fine size reduction, power requirement and mechanism power driven, Crushers, grinders and conveyers.

Unit II: Filtration
Theory, continuous and branch equipments, Flow of solids through fluids, Classification and Sedimentation.

Unit III: Fluid Flow
Properties of fluids, Fluid Statistics: Euler’s Equation Hydrostatic would pressure, measurement, transport of fluids, energy relationships, pipe fittings minor losses in flow.

Unit IV: Flow measurements
Orifice meter, Nozzle and Venturimeters, rotamater and pitot tube.

Unit V: Pumping and compressing
Reciprocation pumps, rotary pumps, centrifugal pumps and’ blowers, Introduction of fluidization.

Reference Books:
1. Introduction of fluid mechanics by Robert W. Fox and Sian
2. Medonal, John & sons, Ny- Fourth Ed.
1. To determine the experimentally the met centric height of a ship model.

2. To verify the momentum equation experimentally.

3. To determine the coefficient of discharge of an orifice (or a mouth piece) of a given shape. Also to determine the coefficient of velocity and the coefficient of contraction of the orifice (or the mouth piece).

4. To plot the flow net for a given model using the concept of electrical analogy.

5. To measure surface tension of a liquid.

6. To calibrate an orifice meter and study the variation of the coefficient of discharge with the Reynolds number.

7. To verify Darcy’s law and to find out the coefficient of permeability of the given medium.

8. To study the transition from laminar to turbulent flow and to determine the lower critical Reynolds number.

9. To study the velocity distribution in a pipe and also to compute the discharge by integrating the velocity profile.

10. To study the variation of friction factor f for turbulent flow in smooth and rough commercial pipes.

11. To determine the loss coefficient for the pipe fitting.

12. To study the flow behavior in a pipe bend and to calibrate the pipe bend for discharge measurement.
IV
SEMESTER
IMMUNOLOGY (BT-401)

Unit-I:
Introduction to immunity, characteristic’s of innate and adaptive immunity, primary and secondary lymphoid organ, cell and molecule of immune system, humoral and cell mediated immunity, clonal selection.

Unit-II:
Exogenous and endogenous pathways of antigen processing and presentation strucer and function of MHC molecule, characteristics of T & B cell epitopes, policlinic and monoclonal antibody, complement system, antigen and antibody reaction.

Unit-III:
Structure function & application of cytokines, regulation of immune response, immune tolerance, serological techniques – ELISA RAI & IMMUNOBLLOTING.

Unit-IV:
Production and application of monoclonal & polyclonal antibiotics, production of antibiotics, factor affecting in the immunogenicity, aduvent , dose of antigen, vaccine & types of vaccine preparation.

Unit-V:
Immunity against infectious virus bacteria & protozoa hypersensitivity.

Textbook & References:

1. Essential Immunology-I, by M. Roitt ,10th edition
2. Kuby’s Immunology –Murry ,5th edition
3. Lydyard etal, instantnotes Immology, viva publication.
1. Staining of bacterial flagella antigen.
2. Different types of antigen-antibody cross reaction.
3. Isolation, purification and identification of immunoglobulin from goat blood.
4. Double diffusion techniques for identification of antigen-antibody samples
5. Immunoelectrophoresis techniques.
6. ELISA
7. RIA
8. Immunoblotting using ELISA-dot or western blotting.
ENZYMOLGY BT-402)

Unit I:
Introduction, classification, & nomenclature of enzymes, active sites, is enzyme, coenzyme, cofactors, multienzyme complexes, intracellular and extra cellular enzyme, Physicochemical characteristic of enzyme.

Unit II:
Enzyme kinetics, measurement of K_m & V_{max} kinetics of competitive, non-competitive and un-competitive inhabitation of enzymes, effect of pH temperature substrate concentration on enzyme kinetics, allosteric enzyme and their kinetics.

Unit III:
Introduction to industrial enzymes – Topoisomerases, chymotrypsia, glyceraldehydes, phosphate dehydrogenise, lysozye, carboxypeptidase, ribonuclease, aldolase, glucoisomerases, lactases, ribozyme.

Unit IV:
Molecular folding & defolding of enzymes, stability of enzymes, enzyme immobilization.

Unit V:
Isolation, purification, and characterization of enzymes, industrial diagnosis and therapeutic application of enzymes.

Text Books and References:

3. Enzyme kinetics-Hans Bisswanger, Wiley Publication
5. Hans Bisswanger, Enzyme Kinetics- Wiley Publication

GENETICS AND MOLECULAR BIOLOGY (BT 403)
Unit I:
Fundamental principal of genetics, gene interaction, multiple alleles, complementation linkage, Recombination linkage mapping, extra- chromosomal inheritance chromosomal basis of heredity (characteristics).

Unit II:
DNA as the genetic material, structure & types of DNA, transposable elements central Dogma, DNA repairing, Mutations, cell cycle regulation.

Unit III:
DNA replication processes in prokaryotes & eukaryotes, Activity of DNA polymerase and Topoisomerase, Reverse transcriptase.

Unit IV:
Transcription processes in prokaryotes & eukaryotes, posttranscriptional modification Processes, open reading frames.

Unit V:
Genetic code wobbles hypothesis, translation process in prokaryotes & eukaryotes, Regulation of gene expression in prokaryotes and viruses, Hormonal control of gene expression in eukaryotes.

Text books and references:

1. Genetics – suickberger.2nd Ed.
2. Microbial Genetics – D. friflelder
3. Albert B. Brav Denisetals Molecular biology of the cell, latest ed.
5. Advance Genetics by G S miglam nalosg publication house.

GENETICS AND MOLECULAR BIOLOGY (BT-452)

1. Estimation of DNA content in the given sample by diphenylamine method.
2. Estimation of RNA content by orcinol method.
3. Determination of Tm of DNA and RNA.
4. Isolation of plasmid DNA.
5. Isolation of bacterial / fungal genomic DNA.
6. Isolation of plant DNA.
7. Purification of DNA through columns.
Principle of DNA, RNA & protein sequencing, file formats for storage of sequence and structural data primary sequence databases of nucleic acids and proteins, organism specific genome databases, structural database.

Unit II:
Specialized sequence databases of expressed sequence tags, gene expression, transcription factor binding side & single nucleotide polymorphisms, OMIM, Unigene etc. Data retrieval with ENTREZ, SRS and DBGET, secondary databases (Pfam, PROSTTE, block, etc)

Unit III:
Sequences alignment (pair-wise and multiple), alignment algorithms, databases similarity, searches (BLAST, FASTA and PSI-BLASTA), amino acid substitution matrices, protiles and motifs.

Unit IV:
Protein structure prediction (secondary and tertiary), homology modelling, ORF predication, gene predication, micro array data analysis.

Unit V:
Structure visualization methods, structure classification, structural alignment and analysis, Bioinformatics applications in drug and Vaccine discovery.

Text books and references:

1. N. Mishra; Bioinformatics: concept and application pearson Education (In press)
2. ORelly; developing bioinformatics Computer Skill – 1st Indian – edition publication.
3. Anthony J.F. griffiths etal; an intro. to Genetics Analisis – 1st Ed.

]
1. Construction of database for specific class of protein/enzymes/genes/ORF/EST/promoter sequences/DNA motif or protein motif using oracle.

2. Access and use of different online protein and gene alignment softwares.

3. Gene related finding search for a given nucleotide sequence in order to predict the gene.

4. ORF prediction for different proteins out of some given nucleotide sequences.

5. Exon identification using available software for a given nucleotide sequences.

6. Secondary structure prediction for amino acid sequences of a given protein.
HEAT TRANSFER OPERATION (CH – 401)

Unit I:
Introduction to heat transfer and general concept of heat transfer by conduction and radiation. Conduction: Basic concepts of conduction in solids, liquids and gases, steady state temperature fields and one dimensional conduction without heat generation e.g. plane wall Cylindrical, spherical surface & composite layers etc. Insulation mg critical and optimum insulation thickness. Extended surface, fine & their applications. Introduction to unsteady state heat transfer.

Unit II:
Convection: Fundamental of Convection, basic concepts & definition Natural & fixed convection. Hydrodynamics & thermal boundary layers, laminar & turbulent Heat transfer inside & outside, tubes, Dimensional analysis, determination of internal And overall heat transfer coefficients & their temperature dependence, heat transfer in Molten metals

Unit III:
Heat transfer with phase change: Condensation of pure and mixed vapours, films wise & drop wise condensation, loading in condenser and basic calculation on condenses heat transfer in boiling liquids, boiling heat transfer coefficients.

Unit IV:
Heat transfer Equipments: classification, principles and design criteria, types of exchanger’s viz. double pipe, shell & tube, plate type, extended surface, cooling towers etc. Furnaces and their classification and applications simple conduction.

Unit V:
Radiation & Evaporation: basic laws of heat transfer by radiation, black body & Gray body concepts, view factors Kerchief’s law, solar radiation, combined heat Transfer coefficient by convection & radiation elementary principle, types of Evaporators, single & multiple effect evaporators, and their calculation, thermo co Compression.

Text books & references:
4. Introduction to Chemical engineering. TMH By Bedyer W.L. & J. T. Banchero ;
5. Unit operation II by K. A. Gavhane.
V

SEMESTER
BIOPHYSICAL TECHNIQUES (BT-501)

Unit-I:
Chromatography: Adsorption, affinity, partition (GLC, GC, HPL, TLC, RPC etc) Immobilized cells.
Electrophoresis colloidal solution of biopolymers and their electrochemical properties. Different method of electrophoresis for proteins, nucleic, acids, small molecular Weight compound and immunoprecipitets, peptide mapping and combination of electro focussing and SDS-PAGE.

Unit-II:
Hydrodynamics properties: Viscosity, diffusion of biopolymers, molecular weight determination, osmotic pressure, Reverse osmosis, and Doman effect, structure of bio-membranes and their electrochemical properties, membrane potential, action potential and action potential and propagation of impulses.

Unit -III:
Introduction to principles and application of (a) spectroscopic method (UV, Viz IR, Fluorescence, ORD,CD, & PAS), (b) NME, ESR and mass spectrometry. Use of radioactive and stable isotopes and the detection in biological system, introduction to principle and working of light and electron microscopes.

Unit -IV:
Automatic analyser for amino acid, protein, sequenator, peptide synthesizer and nucleic acid synthesizer, Theory of lyophillyzation and its application to biological system.

Unit -V:
Cell sorter: Principle, working and application theory of centrifugation and application to biological system, Density centrifugation, Ultra centrifugation’s principle and application.

Textbook of References:

1. Principal of biochemistry: Macmillan worth publication by lehninger.
3. DNA and Protein interaction. OUP, 2004: by Travers, Andrew and Maleolm Buckld.

BIOPROCESS ENGGINEERING-I (BT-502)
Unit -I:
Methods of inoculation and medium preparation, media design and optimization, microbial growth in closed, semi-open and open cultivation system, maintenance energy and yield concepts, parameters of growth and analysis of growth data, estimation of biomass.

Unit -II:
Sterilization: concept and methods, sterilization of medium, kinetics of thermal death of micro organisms, batch sterilization, continues sterilization, sterilization of air, methods, filters and design of depth filters.

Unit -III:
Microbial kinetics of growth and substrate utilization, product formation in batch plug flow and chemo state culture, microbial pellet formation, flocculation kinetics and dynamics of pallet formation.

Unit -IV:
Material and energy balance in steady and unsteady state reaction system, Oxygen transfer in bioreactors, measurement of K la-oxygen, and transfer in large vessels.

Unit -V:
Control of physical, chemical and biological environment of the bioreactor, advanced control strategies Via, PID controllers, fuzzy logic based controllers and artificial, actual network based controllers, role of physical, chemical & biological sensors.

Text book of References:

2. Baily & Olis- Biochemical Engineering.
5. Principles of fermentation Technology-Allan Whitaker, Peter F. Stanbury.
BIOPROCESS ENGINEERING-I Lab (BT-552)

1. Design and construction of different types of laboratory bioreactors (batch, semi batch and continuous homogeneous)
2. Plot growth curve of *E.coli*
3. Quantification of cell mass.
4. Quantification of cell number.
5. Separation of microbial cells from broth.
7. Sterilization of glasswares by moist heat.
8. Preparation of fermenting media.
9. Determination of kinetic parameter for batch culture of yeast under stationary and shake flake conditions.
10. Growth kinetics studies of yeast in a bench top lab fermenter under controlled conditions.
11. Determination of volumetric oxygen transfer coefficient KLa, effect of aeration and agitation speed.

INDUSTRIAL ECONIMICES AND PRINCIPAL OF MANAGEMENT (HU-501)
Unit-I:
Introduction: Nature and significance of economics, Meaning of science, engineering and technology and their relationship with economic development;

Unit-II:
Basic concept: The concept of demand and supply, Elasticity of demand and supply, indifference curve Analysis, Price effect, income effect and substitution effect.

Unit-III:
Money and banking: Functions of money, Value of money, inflation and measures to control it. Brief idea of functions of banking system, viz., Commercial and central banking, Business fluctuations.

Unit-IV:

Unit-V:
Human behaviour: Factors of individual Behaviour, Perception, Learning and Personality Development, interpersonal Relationship and group Behaviour.

Text Books & References:

2. Luthers Fred/ Organizational Behaviour.
Unit-I
Introduction: Algorithms, analysis of algorithms, Growth of functions, Masters theorem, Designing of algorithms, sorting and order statistics, Heap sort, quick sort, sorting in Linear tune, Medians and order Statistics.

Unit-II
Advanced Data Structure: Red – Black Tree, Augmenting, Data Structure. B- Tree, Binomial Heaps, Fibonacci heaps, data structure for disjoint sets.

Unit-III
Advanced data and analysis techniques: Dynamic programming, Greedy Algorithms, Amortized analysis, back tracking.

Unit-IV

Unit-V
Selected topics: Randomized algorithms, string matching, NP completeness, and approximation algorithms

Text Book & References:
1. Coreman, Rivest, Lisserson: Algorithm, PHI.

DESIGN & ANALYSIS OF ALGORITHMS LAB (CS-551)
Programming assignment on each algorithmic strategy:

1. Divide and conquer method (quick sort, merge sort, Strassens matrix multiplication)
2. Greedy method (knapsack problem, job sequencing, optimal merge patterns, minimal spanning tree).
3. Dynamic programming (multistage graphs, OBST, 0/1 Knapsack, traveling salesperson problem).
5. Sorting: Insertion sort, heap sort, bubble sort.
MASS TRANSFER OPERATION –I (CH-501)

Unit-I:
Basic principal of mass transfer
Diffusion: molecular and turbulent diffusion, in fluid, inter phase mass transfer, mass transfer coefficient diffusion coefficient.
Humidification operation: vapor pressure, Enthalpy, absolute humidity, dew point concept, Understands vapor gas mixtures.

Unit-II:
Gas Absorption: counter current. Co-current , Multistage continuous contact operation.

Unit-III:
Distillation: Entrainment, pressure drops, flooding, transfer coefficient &relative volatility, Mc Cabe thiele and Ponchon method for binary component distillation of azoetrope’s, flash vaporization & multicomponent distillation.

Unit-IV:
Liquid Extraction: counter current ,co-current operation in single stage & multistage solvent Extraction. Triangular diagram.

Unit-V:
Drying: Batch & freeze drying, Rotary dryers, surface Vs diffusion controlled operations.
Leaching: Types of Leaching, single and multi stage process.

Textbooks and References:

VI
SEMESTER
BIOINFORMATICS -II (BT-601)

Unit I:

Unit II:
Overview of key computation induction techniques for density estimation, clustering, discrimination and regression. Statistical inference: significance testing, regression, Bayes rule, dimensionality reduction.

Unit III:
Machine learning: information theoretic decision, tree induction, neural networks, the E/M algorithm (including K-means clustering and fitting hidden Markov models), genetic algorithms, simulated annealing, support vector machines, and the relation between statistics and machine learning, evaluation of prediction methods: parametric tests, cross-validation and empirical significance testing.

Unit IV:
Overview of key computation simulation techniques: differential equation simulators, parameter estimation, and sensitivity analysis. Overview of key techniques for the management of large document clustering and natural language information extraction.

Unit V:
Advanced topics in bioinformatics. This course will address recent developments in bioinformatics and focus on advanced issues in specific areas including (but not limited to), information extraction from biomedical literature, inference of biochemical networks from high throughput data, and prediction of protein function.

Text Books & References:
2. Evens & Grants, Statistical methods in Bioinformatics-Springer-Verlag, NY.
3. MJE Sterberg, protein structure prediction- A Practical approach, oxford university press.

BIOINFORMATICS II LAB (BT-651)
1. Insilico gene identification/ Characterization in prokaryotic organism using suitable annotation tools.

2. Secondary structure determination of protein molecules using various tools.

4. Development of gene finding program using statical significance and C++/C/perl etc.

5. Establishment of method for gene and protein phylogeny by taking specific example.
PLANT BIOTECNOLOGY (BT-602)

Unit-I:
Introductory history: laboratory organization; Nutrition of plant cells; Media composition-solid and liquid; biology plant in culture, tissue and organ culture; establishment and maintenance of callus and suspension culture; cellular differentiation and regulation of morphogenesis; somatic embryogenesis; control of organogenesis and embryogenesis; Single cell, method; cytology of callus. Tissue culture and genetic engineering.

Unit-II:
Haploid production-Androgenesis; anther and microspore culture; gynogenesis; embryo culture and rescue in agriculture and horticulture corps; protoplast isolation; culture regeneration; somatic hybrid-cybrid; in vitro selection of mutants-mutants for salts,disease,cold drought, herbicide and other stress condition; plant micro propagation; Application of micro propagation in forestry and historical crops; micro grafting –in vitro clonal multiplication- Meristem culture and virus elimination; shoot tip culture.

Unit-III:
Improved crop varieties through somaclonal variation in vitro culture-causes stability and utilization genetic and epigenetic basis; establishment of cells lines and evaluation; secondary metabolite culture in cell culture ; application of tissue culture for crop improvement in agriculture ,horticulture and forestry.

Unit-IV:
Introduction to plant genetic engineering: methodology; plant transformation with Ti plasmid of Agrobacterium tumifacians, Ti plasmid derived vector system; physical method of transferring genes to plant- Microprojectile bombardment, Electroporation; Manipulation of gene expression in plants; production of marker free transgenic plants.

Unit-V:
Developing insect- resistance, disease- resistance, herbicide resistance; stress and genetic manipulation of flower pigmentation .developing quality of seed storage, proviamin A, iron protein in rice, modification of food plant test and appearance, yield increase in plants, wild plant relatives as sources of novel gene, plants as bioreactor antibodies, polymers, foreign proteins in seeds genomic mapping efforts in rice & mize potential application.

Text Books & References:
7. Plant cell culture, Advances in biochemical engineering and biotechnology. Anderson,LA.

FERMENTATION BIOTECHNOLOGY (BT-603)
Unit-I:
History and development of fermentation industry: introduction to submerged and solid state fermentation, Primary and secondary metabolite.

Unit-II:
Raw material availability, quality processes and pre-treatment of raw materials.

Unit-III:
Different regulatory mechanisms in controlling the catabolic and anabolic processes of microbes. Induction, nutritional repression, carbon catabolite repression, crabtree effect, feed bed inhibition and repression.

Unit-IV:
Creation/procedures for developing mutant of the desired microbe’s with the stable capacity of producing desired metabolites. Isolation and preservation of different types of mutants- induction resistant, feedback inhibition resistant. Concept of overproduction of metabolites.

Unit-V:
Fermentation of recombinant microbial cell for large scale production of genetically engineered primary and secondary metabolites.

Text Books & References:

2. Industrial Fermentation –Leland, N.Y. Chemical publishers.
FERMENTATION BIOTECHNOLOGY LAB (BT-653)

1. Study of induction effect of galactosidase enzyme in *E.coli*.
2. Fermentation of ethyl alcohol using *Candida albicans*.
3. Fermentation of cetric acid using *Aspergillus niger*.
5. Designing of fermentation processes for penicillin and 6-APA.
7. Yeast fermentation for production of ethanol.
8. Fermentation of Penicillium crysogenum to produce penicillin.
GENETIC ENGINEERING (BT-604)

Unit-I:
Gene cloning: concepts and basic steps, application of bacteria and viruses in genetic molecular biology of Ecoli and bacteriophases in the context of their use in genetic engineering. General characteristics of the cloning vectors used in genetic engineering, plasmid vectors viz PER 322, pUC plasmids, M13 vectors, lambda vectors, cosmids, phagemids, artificial chromosomes.

Unit-II:
Restriction modification, enzymes used in recombinant DNA Technology endonucleases, ligases and other enzyme useful in gene cloning, PCR for gene/ DNA detection, cDNA, use of Agrobacterium for genetic engineering in plants, use of marker gene. Cloning of foreign genes: DNA delivery method physical and biological methods, Genetic transformation prokaryotic: transferring DNA into E. coli – chemical induction and Electroporation.

Unit-III:
Gene library: construction of cDNA library and genomic library, screening of gene libraries – screening by DNA hybridization, immunological assay and protein activity, Marker genes: selectable markers and screenabal marker marker and non antibiotic markers gene expiration in prokaryotes: tissue specific promoter, wound inducible promoters, translation expression vector; DNA interigation into bacterial genome; Increasing secretion; metabolic load, recombint protein production in yest: Sacchromyces cerevisiae expression systems; mammalian cell expression Vectors.

Unit-IV:
Origins of organismal cloning in development biology research on frong; nuclear transfer procedures and cloning of sheep (Dolly) &oter mammals; application in conservation; therapeutic vs reproductive cloning; ethical issues and prospects for human cloning: two vector expression system; two gene expression vector, directed mutagenesis; transposson mutagenesis, gene targeting, site specific recombination.

Unit-V:
General principle of cell signaling, extra cellular signal molecule and their receptors, operation of signaling molecules over various distances sharing of signal information, cellular response to specific combination of extracelluar signal molecules, Western, Southern and Nothern blotting, dot-blot hybridization. Sequencing of DNA through Sanger’s and Maxim and Gilbert’s method, automated DNA sequencing, Antisense technology.

Textbooks and References

2. Benjamin Levin – Genes VIII, Oxford University Press.
9. principle of genetics, Robert H Tamarin, TMH publication,2

GENETIC ENGINEERING LAB (BT-654)
1. Extraction and isolation of plasmid DNA.
2. Isolation of genomic DNA.
3. Agarose gel electrophoresis to know the molecular weight of unknown DNA.
4. Agarose/PAGE electrophoresis to elute the desired DNA.
5. Restriction map preparation for a given DNA.
6. Estimation and quantification of DNA.
7. Cloning experiment for a given DNA fragment into a plasmid vector.
8. Transformation of the recombinant vector in E.coli.
10. Western Blotting.
MASS TRANSFER OPERATION-II (CH-601)

Unit-I
Diffusion
Molecular and Turbulent diffusion, diffusion coefficient, Ficks law of diffusion, measurement and estimation of diffusivity, diffusion in multicomponent gas mixtures, diffusion in solids, Molecular, Knudsen and surface diffusion.

Unit-II
Adsorption and stripping
Equipments, gas- liquid equilibria, Henrys law, selection of solvent, absorption in tray column, graphical and analytical methods. Adsorption in packed columns, HTU,NTU & HETP concepts, design equation for packed column.

Unit-III
Humidification and dehumidification
Vapour liquid equilibrium and enthalpy for a pure substance, vapour pressure- temperature curve, vapour gas mixtures, defination and derivation of relationships related with humidity, fundamental concept of humidification. Dehumidification and water cooling, wet bulb temperature, adiabatic and non adiabatic operation, evaporation cooling, classification and design of cooling towers.

Unit-IV
Drying
Solid-gas equilibria, definitions of moisture contents, types of batch and continuous dryers, rate of batch drying, time of drying, mechanism of batch drying, continuous drying.

Unit-V
Crystallization
Equilibrium yield of crystallization, heat and mass transfer rates in crystallization, theories of crystallization. Classification and design of crystallizers.

References:

VII SEMESTER
CHEMICAL REACTION ENGINEERING (CH-701)

Unit-I
Chemical Reaction: Rate of chemical reaction, variable affecting the reaction rate, reaction rate constant, elementary and non-elementary reaction mechanism. Arrhenious equation, collision theory and theory of absolute reaction rates, predictability of reaction rate.

Unit-II
Kinetics of homogeneous chemical reaction, rate equation of simple and complex reactions, irreversible reaction, parallel reactions, consecutive reactions, auto catalytic reactions and homogeneous catalytic reactions.

Unit-III
Interpretation of reaction data in constant volume and variable volume batch reactions, integral and differential method for following kinetic data.

Unit-IV

Unit-V
Catalysts: Preparation, activity and the factors which influence it. The effect of physical properties such as surface area and pore size etc. on catalyst activity, methods of determination of their physical properties, catalyst poisoning, Biocatalysis, Heterogeneous catalytic reactions, principles, absorption isotherms, kinetics of solid catalysed fluid reactions, rate-controlling steps. Use of computers in designing, modelling, optimization and simulation of chemical process.

References:
2. Coulson and Richardson, Chemical Engg., Pergamon Press.
4. Fogler: Chemical reaction Engineering
ENVIRONMENT BIOTECHNOLOGY (BT-701)

Unit I:
Factors of environmental degradation. Pollutants and their types: nature and source. Different biogeochemical cycles including nitrogen, carbon, hydrogen, oxygen etc. Pollution monitoring and measurement.

Unit II:
Biosensors for environmental testing: Physical, chemical and biological for sensing the pollutions.

Unit III:
Waste disposal and management; legislation of environmental problems, Microbiological and biochemical aspects of waste treatment processes, Microbial strain improvement with a view to develop scavengers, Bioremediation.

Unit IV:
Characteristics of wastewater; aerobic and anaerobic waste treatment processes. Biological treatment of solid wastes, Process design, Single stage and two stage anaerobic digestion.

Unit V:

Text Books and References:

2. Metcalf- a Book on Waste water biotechnology
ENVIRONMENTAL BIOTECHNOLOGY LAB (BT-751)

1. Physico-chemical and biological characterization of waste water.

2. Determination of total solids, total dissolved solids, total suspended solids, volatile solids, fixed solid/ash content and moisture content in solid waste and waste water.

3. Determination of MLVSS.

4. Determination of sludge volume index and food to microorganisms.

5. Determination of Kjeldahl nitrogen, nitrate and nitrite nitrogen.

6. Determination of inorganic phosphates.

7. Determination of BOD of wastewater samples.

8. Determination of COD of wastewater samples.
Elective-I

ANIMAL TISSUE CULTURE (BT-702)

Unit-I
Basic laboratory techniques, cell culture media, methods for primary cell & organ culture.

Unit-II
Permanent cell lines: cell strains (monolayers, suspension culture, stationary suspension culture, agar culture and agitated microcarrier suspension culture, hollow fiber systems)

Unit-III
Cell synchronization and cell transformation. Maintenance of cell culture through subculture and cloning, cryopreservation.

Unit-IV
Specific application of cell in culture, pharmaceuticals, vaccines, monoclonal antibodies, recombinant protein.

Unit-V
Embryonic cell lines, gene transfers and transgenic animals and embryo transfer technology.

Reference Books:
2. Tissue culture methods & Application – Kruse P.E & Patterson M.K.
3. Animal Tissue Culture-Ian Freshney
Elective-II

FOOD BIOTECHNOLOGY (BT-703)

Unit I:
Microbial role in food process, operation and production: new protein foods-SCP, mushroom, food yeast, algal proteins.

Unit II:
Fermentation as a method for preparing and preserving foods, food additives like colouring, flavours and vitamins.

Unit III:
Organisms and their use for production of fermented foods and beverages: pickling, alcoholic beverages, cheese, sour, krat, idli, vinegar.

Unit IV:
Deoxygenating and desugaring by glucose oxidase, beer mashing and chill proofing or cheese making by proteases and various other enzyme catalytic actions in food processing, classification of fruit juice.

Unit V:
Post harvest technology and process of food preservation.

Text Books and References

1. Frazier, Food Microbiology, TMH Publications
3. Lel A. et al., Microorganisms & Fermentations- N.y. Chemical
4. Rehm, Biotechnology Set – Wiley Publications
B. Tech. Biotechnology Engineering

7th Semester

Nano Biotechnology (OE-03)

Unit 1
Introduction to Nano Biotechnology & Nano Technology, History of Nano Biotechnology, Cell-Nano Structure Interaction

Unit 2
Protein based nano structures, micro contact printing of proteins, micro contact printing polypeptide, polyhydroxyalkanoates in nano biotechnology : Protein – protein interaction studies

Unit 3
Engineered nanopores, potential applications of nanopores, Biomineralization of magnetosomes in bacteria, Microbial production of alginites

Unit 4
Microbial nanoparticle production, biopolyester particles produced by microbes using polyester syntheses

Unit 5
DNA based nanostructures, DNA protein nanostructures, DNA template electronics, DNA nanostructure for mechanics and computing biomimetic fabrication of DNA based metallic nanowires and networks

References

MINI PROJECT (BT- 754)

The students will be required to search literature pertaining to design of an equipment/ processing of products of importance for human beings/production of metabolites of microbial origin, comprehend it and prepare a report for assessment.
INDUSTRIAL TRAINING (BT- 753)

The student will be required to undertake training in the Biotech industry after third year B.Tech (VI semester) for a specified period (Four weeks) and submit its report after completion for evaluation and oral examination in the VII semester of his studies in final year B.Tech.(VII semester)
VIII SEMESTER
BIOPROCESS ENGINEERING-II (BT-801)

Unit-I
Microbial growth in closed, semi-open and open cultivation systems, Maintenance energy and yield concepts, Microbial kinetics of growth and substrate utilization, Environmental effect on cell growth.

Unit-II
Material balance in steady and unsteady reaction system, Product formation in batch, plug flow and chemo stat culture, ATP biosynthesis in different pathways.

Unit-III
Mass transfer in different reaction systems, concepts of material and mass balance. Material and energy balance in steady and unsteady reaction systems. Oxygen transfer in bioreactors, measurement of KLa. Oxygen transfer in large vessels.

Unit-IV
Types of bioreactors- batch, fed-batch, fluidized bed, plug flow reactor, air lift, bubble column and continuous stirred tank reactor. Scale – up of bioprocesses: General aspects and scale up methods, Practical considerations for bioreactor construction for cells and enzymes.

Unit-V
Control of physical and biological environment of bioreactor. Advanced control strategies viz. PID controllers, fuzzy logic based controllers and artificial neural network based controllers.

References Books:
BIOSEPARATION AND DOWNSTREAM PROCESSING (BT-802)

Unit I:
Introduction; An overview of Bioseperation, Separation of cells and other insoluble from fermented broth.

Unit II:
Filtration and Micro filtration. Centrifugation (batch, continuous. designing of centrifuges for desired product of desired capacity.

Unit III:

Unit IV:

Unit V:
Electrophoresis and Chromatography principles for product purification. Different electrophoresis techniques viz. iso electric focusing, chromatographic techniques viz. paper, gel filtration, column, ion exchange, affinity, GLC, HPLC. Dialysis, ulterafilteration. Product polishing: Crystallization and drying.

Textbooks & References :
4. Humphrey, Aiba & Miller, Biochemical Engg., Academic press
7. Staburry & Whitteker, Principles of Fermentation Technology, Pergamon Press
8. Willard et al., - International Method of Analysis- CBS Publication
Elective-III

IPR, BIOSAFTEY & BIOETHICS (BT-803)

Unit-I
Jurisprudential definition and concept of property, rights, dities and their correlation. History and evolution of IPR – like patent, design and copy right, Indian patent act 1970(amendment 2000), international convention in IPR, major changes in Indian patent system as post TRIPS effects obtaining patent (ii) geographical indication.

Unit-II
Distinction among various forms of IPR, requirement of a patentable novelty, invention step and prior art and state of art, procedure.

Unit-IV
Right/ protection, infringement or violation, remedies against infringement- civil and criminal.

Unit-V
Bioasaftey and Bioethical issues in Biotechnology.

Reference Books:
1. Patent strategy for researchers & research manegers- Knight, Wily publication.
Elective-IV

INDUSTRIAL BIOTECHNOLOGY (BT-804)

Unit-I:
Fermentative production of organic acids: Lactic acid, citric acid and Acetic acid, Fermentative product of enzymes: Proteases, Lipases and Amylases.

Unit-II
Fermentative product of biofertilizers i.e. Rhizobium, BGA, Biopesticide i.e. Bacillus thuringienesis, Single cell protein (SCP) and Bakers yeast.

Unit-III
Fermentative product of antibiotics: penicillin, streptomycin, tetracycline and cephalosporin. Production of vitamins like Vitamin B₁₂, amino acids i.e. L-glutamic acid, phenylalanine and L-lysine.

Unit-IV
Fermentative production of organic solvents i.e. ethanol, Butanol and Acetone. Alcoholic beverages i.e. Beer, wine, Rum, Gin, Whisky and Brandy.

Unit-V
Biotransformation- Steroid transformation, Important products through r-DNA technology: hepatitis b vaccines, interferon, insulin, somatotropic hormone. Production of biosurfactants, biopolymers like xanthan gum and dextrin. Bioprocess Economics.

References:
2. A.Lel and R.J.Mickey, Microorganisms & Fermentation, Oriffin Publications.
3. Fraizer, Food Microbiology, TMH Publication
5. Prescott and Donn, Industrial microbiology.
PROJECT (BT- 851)

The students will be required to search literature pertaining to design of an equipment/processing of products of importance for human beings/production of metabolites of microbial origin, comprehend it and prepare a report for assessment.
LIST OF ELECTIVE PAPERS
FOR B.TECH BIOTECHNOLOGY ENGINEERING
STUDENTS

Elective-I
✓ Animal Tissue Culture
✓ Economics of Biotechnology
✓ Agriculture Biotechnology
✓ Environmental & Ecology

Elective- II
✓ Pharmaceutical Biotechnology
✓ Plant Tissue Culture
✓ Food Biotechnology
✓ Immunodiagnostics

Elective- III
✓ IPR, Biosafety & Bioethics
✓ Metabolic Engg.
✓ Immunoinformatics
✓ Enzyme & Protein Engg.

Elective- IV
✓ Pharmacoinformatics
✓ Medical Biotechnology
✓ Biomedical Instrumentation
✓ Industrial Biotechnology
List of open elective of seventh semester for B.Tech Civil/ Electrical and Electronics/ Mechanical & Allied course/ Electronics and communication & Allied Courses? Instrumentation and control & Allied Courses/Computer Engg. & Allied Courses/ Information Technology & Allied courses / Biotechnology/ Marine Engg./Biomedical Engg.

<table>
<thead>
<tr>
<th>S.no</th>
<th>Paper Code</th>
<th>Subjects</th>
<th>Departments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>OE-01</td>
<td>Non Conventional Energy Resources</td>
<td>Electrical Engg.</td>
</tr>
<tr>
<td>3</td>
<td>OE-03</td>
<td>Nano-Biotechnology</td>
<td>Material Sc. & Engg. (Mechanical Engg.)</td>
</tr>
<tr>
<td>4</td>
<td>OE-04</td>
<td>GIS & Its application</td>
<td>Civil Engg.</td>
</tr>
<tr>
<td>5</td>
<td>OE-05</td>
<td>Entrepreneurship Development Programme</td>
<td>Humanities</td>
</tr>
<tr>
<td>6</td>
<td>OE-06</td>
<td>Ancient Indian Culture</td>
<td>Humanities</td>
</tr>
<tr>
<td>8</td>
<td>OE-08</td>
<td>Condition Monitoring & Diagnostics</td>
<td>Mechanical Engg.</td>
</tr>
<tr>
<td>10</td>
<td>OE-10</td>
<td>Intelligent Instrument</td>
<td>Instrumentation & Control</td>
</tr>
<tr>
<td>11</td>
<td>OE-11</td>
<td>Microprocessor Based Instrumentation system</td>
<td>Instrumentation & Control</td>
</tr>
<tr>
<td>15</td>
<td>OE-15</td>
<td>Human Computer Interaction</td>
<td>Computer Science</td>
</tr>
<tr>
<td>16</td>
<td>OE-16</td>
<td>IT in Business</td>
<td>Information Technology</td>
</tr>
<tr>
<td>17</td>
<td>OE-17</td>
<td>Human Value</td>
<td>Humanities</td>
</tr>
<tr>
<td>20</td>
<td>OE-20</td>
<td>Artificial Intelligence in Manufacturing</td>
<td>Manufacturing Tech.</td>
</tr>
<tr>
<td>21</td>
<td>OE-21</td>
<td>Advance Foundry Technology</td>
<td>Manufacturing Tech</td>
</tr>
</tbody>
</table>

Note: The students will choose any one subject of course of other than their Engineering Branch.